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How to read these notes
This set of notes covers half of the Chicago Booth PhD Math Camp given during Summer 2020, 2021,

and 2022. Karthik’s notes cover the other half of the course, which includes Linear Algebra, Real Analysis,
Probability, and Statistical Inference II.1

Combined, the notes intend to provide a comprehensive introduction to the material that PhD students
may see over their first year courses. Students are not expected to know all the material before starting
their classes, but they should hopefully be able to grasp concepts and trace themes out in the material that
will be repeated throughout their first-year courses.

The notes are structured as follows. Statistical Inference I provides an introduction to the fundamentals
of statistical inference. Statistical Inference III provides an overview of panel data methods and introduces
causal inference. Optimization Theory introduces constrained, unconstrained, and convex optimization.
Dynamic Programming first covers fixed point theorems, then introduces dynamic programming, and
finally provides the general setup.

The fundamentals sections under each part provide the essential materials and key themes that stu-
dents should see in their courses. At a minimum, these should be reviewed in preparation for the first-year
courses. The topics sections provide additional content for student interested in exploring more. The com-
putational examples give a sense of how the tools and machinery taught can be implemented in practice.2

The split for fundamentals vs. topics is notmade explicitly for Statistical Inference III andDynamic Pro-
gramming. For Statistical Inference III, Section 5.2 should be treated as the topics section, and for Dynamic
Programming, Section 11.4 should be treated as the topics section. The machine learning introduction for
Statistical Inference III has been incorporated into the its computational example.

Various sections of these notes are based off material from Jianfei Cao’s Math Camp notes, Chris
Hansen’s applied econometrics lecture notes, John Cochrane’s time series analysis notes, Günter J. Hitsch’s
notes on causality, Galichon (2016) for overviews of the optimal transport and fixed point theorems, and
Adda and Cooper (2003) for the introduction to dynamic programming. The comic strips are from PhD
Comics.

I thank Malaina Brown, Jefferey R. Russell, Kim Mayer, Jianfei Cao, Ali Goli, James W. Kiselik, my PhD
cohort, and my co-instructor Karthik Srinivasan for all their help in designing and running the course. I
thank all the students who took my course over the years for refining the course materials.

1Karthik’s notes can be found on his website.
2The coding examples are available on RStudio Cloud: https://posit.cloud/content/2778671.
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Part I

Statistical Inference I - Fundamentals
This section provides an overview of the fundamental concepts in statistical inference used over the first
year courses. These concepts should provide background for the first quarter econometrics courses at
Booth or the Economics department. The companion RMarkdown notebook walks through a derivation of
the properties of an estimator and provides a simulation study comparing biased and unbiased estimators.
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1 FUNDAMENTALS

1 Fundamentals

1.1 Building Blocks

Definition 1. Let {𝑋𝑛}∞𝑛=1 and 𝑋 be random vectors on R𝑘 .

(i) (Convergence in distribution) 𝑋𝑛
𝑑→ 𝑋 , if Pr(𝑋𝑛 ≤ 𝑥) → Pr(𝑋 ≤ 𝑥) for all continuous points of

𝑥 ↦→ Pr(𝑋 ≤ 𝑥)
(ii) (Convergence in probability) 𝑋𝑛

𝑝
→ 𝑋 , if Pr( |𝑋𝑛 − 𝑋 | ≥ 𝜖) → 0 for all 𝜖 > 0

(iii) (Almost sure convergence) 𝑋𝑛
𝑎𝑠→ 𝑋 , if Pr(lim𝑛→∞𝑋𝑛 = 𝑋 ) = 1

Remark.
1. If 𝑋𝑛

𝑎𝑠→ 𝑋 , then 𝑋𝑛
𝑝
→ 𝑋 ; If 𝑋𝑛

𝑝
→ 𝑋 , then 𝑋𝑛

𝑑→ 𝑋 .
2. If 𝑋𝑛

𝑑→ 𝑋 and 𝑌𝑛
𝑑→ 𝑌 , it is not necessary that (𝑋𝑛, 𝑌𝑛)′

𝑑→ (𝑋,𝑌 )′.
Counterexample: Let 𝑋 ∼ 𝑁 (0, 1), 𝑋𝑛 = 𝑋 and 𝑌𝑛 = −𝑋 for each 𝑛. Then, 𝑋𝑛

𝑑→ 𝑋 and 𝑌𝑛
𝑑→ 𝑋 , but

(𝑋𝑛, 𝑌𝑛)′
𝑑→ (𝑋,𝑋 )′ does not hold. This is because

𝑋𝑛

𝑌𝑛

 =


𝑋

−𝑋


𝑑→ 𝑁

©«

0

0

 ,


1 −1

−1 1


ª®®¬ ,

but 
𝑋

𝑋

 ∼ 𝑁
©«

0

0

 ,

1 1

1 1


ª®®¬ .

Lemma 1. (Markov’s Inequality) Let 𝑋 be a random variable. Then,

𝑃 ( |𝑋 | ≥ 𝑎) ≤ 𝐸 [|𝑋 |]
𝑎

for 𝑎 > 0. More generally,

𝑃 ( |𝑋 | ≥ 𝑎) ≤ 𝐸 [𝑓 ( |𝑋 |)]
𝑓 (𝑎)

for 𝑎 > 0 and a non-negative increasing function 𝑓 .

Proof. 𝑃 ( |𝑋 | ≥ 𝑎) = 𝐸 [1{|𝑋 | ≥ 𝑎}] ≤ 𝐸 [ |𝑋 |
𝑎
1{|𝑋 | ≥ 𝑎}] = 𝐸 [|𝑋 |/𝑎] = 𝐸 [|𝑋 |]/𝑎. □

Corollary 1. (Chebyshev’s Inequality)

𝑃 ( |𝑋 − ` | ≥ 𝑘𝜎) ≤ 1/𝑘2,

where ` = 𝐸 [𝑋 ] and 𝜎2 = 𝑉𝑎𝑟 [𝑋 ].

Note that this implies for any random variable, the probability of being 2 standard deviations away is
less than 1/4.

Lemma 2. (Continuity of probability measure) Let 𝑃 (𝐴) = Pr(𝑋 ∈ 𝐴) be the induced probability measure.
Then,

𝐴1 ⊂ 𝐴2 ⊂ · · · =⇒ 𝑃 (∪𝑛≥1𝐴𝑛) = lim
𝑛→∞

𝑃 (𝐴𝑛)
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1.1 Building Blocks 1 FUNDAMENTALS

and
𝐵1 ⊃ 𝐵2 ⊃ · · · =⇒ 𝑃 (∩𝑛≥1𝐵𝑛) = lim

𝑛→∞
𝑃 (𝐵𝑛) .

Example 1. 𝑋 ∼ 𝑁 (0, 𝐼2), 𝐴𝑛 = {(𝑋1, 𝑋2) : |𝑋1 | < 𝑛, |𝑋2 | < 𝑛}.

Remark.
1. Even if both 𝑋 and 𝑌 are normally distributed, it does not follow that (𝑋,𝑌 ) is jointly normal.

Counterexample: 𝑋1 ∼ 𝑁 (0, 1) and

𝑋2 =


𝑋1 if𝑈 ≤ 1/2

−𝑋1 if𝑈 > 1/2

where 𝑈 is uniformly distributed on [0, 1] and independent of 𝑋1. Then 𝑋2 ∼ 𝑁 (0, 1). But 𝑋2 |𝑋1 is
not normally distributed, violating requirements of joint normality.

2. If (𝑋,𝑌 ) is jointly normal and 𝐶𝑜𝑣 [𝑋,𝑌 ] = 0, then 𝑋 is independent of 𝑌 .

1.1.1 Useful Theorems

Theorem 1. (Continuous Mapping Theorem/CMT) Let {𝑋𝑛}∞𝑛=1 and 𝑋 be random vectors on R𝑘 , and 𝑔 :
R𝑘 → R𝑑 is continuous function on a set 𝐶 ⊂ R𝑘 where Pr{𝑋 ∈ 𝐶} = 1.

(i) If 𝑋𝑛
𝑑→ 𝑋 , then 𝑔(𝑋𝑛)

𝑑→ 𝑔(𝑋 )
(ii) If 𝑋𝑛

𝑝
→ 𝑋 , then 𝑔(𝑋𝑛)

𝑝
→ 𝑔(𝑋 )

(iii) If 𝑋𝑛
𝑎𝑠→ 𝑋 , then 𝑔(𝑋𝑛)

𝑎𝑠→ 𝑔(𝑋 )

CMT is useful when the consistency or asymptotic distribution of 𝑔(𝑋𝑛) are hard to obtain but those
of 𝑋𝑛 are easier to acquire.

Proof. (ii) Fix 𝜖 > 0. For each 𝛿 > 0, let 𝐵𝛿 = {𝑥 ∈ R𝑘 : ∃𝑦 ∈ R𝑘 , 𝑠 .𝑡 . 𝑑 (𝑥,𝑦) < 𝛿 and 𝑑 (𝑔(𝑥), 𝑔(𝑦)) > 𝜖}.
Then, for some 𝑥 ∈ R𝑘 , if 𝑑 (𝑔(𝑥), 𝑔(𝑦)) > 𝜖 and 𝑥 ∉ 𝐵𝛿 , then 𝑑 (𝑥,𝑦) ≥ 𝛿 . Thus,

Pr(𝑑 (𝑔(𝑋𝑛), 𝑔(𝑋 )) > 𝜖) ≤ Pr(𝑋 ∈ 𝐵𝛿 ) + Pr(𝑑 (𝑋𝑛, 𝑋 ) ≥ 𝛿) .

Let 𝐴𝑛 = 𝐵1/𝑛 ∩ 𝐶 . Pick any 𝑥 ∈ 𝐶 . By continuity of 𝑔, there exits [ > 0, such that 𝑑 (𝑥,𝑦) < [ implies
𝑑 (𝑔(𝑥), 𝑔(𝑦)) < 𝜖 . That is, for each 𝑛 > 1/[, 𝑥 ∉ 𝐵1/𝑛 . So (∩𝑛≥1𝐴𝑛) ∩𝐶 = ∅. By continuity of probability
measure,

lim
𝑛→∞

Pr(𝑋 ∈ 𝐵1/𝑛) = lim
𝑛→∞

Pr(𝑋 ∈ 𝐴𝑛) = Pr(𝑋 ∈ ∩𝑛≥1𝐴𝑛) ≤ 1 − Pr(𝑋 ∈ 𝐶) = 0.

This shows Pr(𝑋 ∈ 𝐵𝛿 ) → 0 as 𝛿 → 0. Then,

lim sup
𝑛→∞

Pr(𝑑 (𝑔(𝑋𝑛), 𝑔(𝑋 )) > 𝜖) ≤ Pr(𝑋 ∈ 𝐵𝛿 ) + 0.

Letting 𝛿 go to zero on both sides shows the theorem.
(iii) Let Ω be the sample space. Assume for each 𝜔 ∈ Ω1 ⊂ Ω, we have 𝑋𝑛 (𝜔) → 𝑋 (𝜔). Let Ω2 = {𝜔 ∈

Ω : 𝑋 (𝜔) ∈ 𝐶}. Then, for each 𝜔 ∈ Ω0 = Ω1 ∩ Ω2, 𝑋𝑛 (𝜔) → 𝑋 (𝜔) implies 𝑔(𝑋𝑛 (𝜔)) → 𝑔(𝑋 (𝜔)) by CMT
of non-random sequence. Also, Pr(Ω0) = Pr((Ω𝑐1∪Ω𝑐2)𝑐) = 1−Pr(Ω𝑐1∪Ω𝑐2) ≥ 1−Pr(Ω𝑐1) −Pr(Ω𝑐2) = 1. □
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1.2 Statistical Inference 1 FUNDAMENTALS

Theorem 2. (Weak Law of Large Number/WLLN) If {𝑋𝑖}∞𝑖=1 is an i.i.d. sequence of random vectors such that

𝐸 [|𝑋𝑖 |] < ∞, then 𝑋𝑛
𝑝
→ 𝐸 [𝑋𝑖] as 𝑛 → ∞, where 𝑋𝑛 = 𝑛−1 ∑𝑛

𝑖=1𝑋𝑖 .

WLLN is often used to show consistency.

Proof. If 𝑉𝑎𝑟 [𝑋𝑖] < ∞, WLLN holds by Chebyshev’s Inequality. □

Theorem 3. (Strong Law of Large Number/SLLN) If {𝑋𝑖}∞𝑖=1 is an i.i.d. sequence of random vectors such that
𝐸 [|𝑋𝑖 |] < ∞, then 𝑋𝑛

𝑎𝑠→ 𝐸 [𝑋𝑖] as 𝑛 → ∞, where 𝑋𝑛 = 𝑛−1 ∑𝑛
𝑖=1𝑋𝑖 .

Theorem 4. (Central Limit Theorem/CLT) If {𝑋𝑖}∞𝑖=1 is an i.i.d. sequence of random vectors such that

𝑉𝑎𝑟 [𝑋𝑖] < ∞, then
√
𝑛(𝑋𝑛 − 𝐸 [𝑋𝑖])

𝑑→ 𝑁 (0,𝑉𝑎𝑟 [𝑋𝑖]), as 𝑛 → ∞.

CLT is often used to show asymptotic normality (often combined with CMT part (i)).

Proposition 1. (Law of Iterated Expectation/LIE) Suppose 𝑋 and 𝑌 are random variables and 𝐸 [𝑋 ] exists,
then 𝐸 [𝑋 ] = 𝐸 [𝐸 [𝑋 |𝑌 ]]. More generally, 𝐸 [𝑋 |𝑍 ] = 𝐸 [𝐸 [𝑋 |𝑌, 𝑍 ] |𝑍 ].

LIE is useful when dealing with mean independence (e.g. 𝐸 [𝑢 |𝑥] = 0).

Exercise 1. Let 𝑓 (𝑦) = 𝐸 [𝑋 |𝑌 = 𝑦]. Verify 𝐸 [𝑋 ] = 𝐸 [𝑓 (𝑌 )].

𝑦1 𝑦2

𝑥1 1/9 2/9

𝑥2 1/3 1/3

1.2 Statistical Inference

The three goals of statistical inference are estimation, hypothesis testing, and constructing a confidence
region.

1.2.1 Estimation

Assume the data {(𝑊𝑖 , 𝑍𝑖)}𝑛𝑖=1 are generated by some probability measure 𝑃\,[ . Suppose the parameter of
interest is \ and we observe𝑊𝑖 but not 𝑍𝑖 . Then an estimator of \ is a function \̂𝑛 = \̂𝑛 ({𝑊𝑖}𝑛𝑖=1).

Example 2. 𝑌𝑖 = 𝑋𝑖 + 𝜖𝑖 , where 𝑋𝑖 ∼ 𝑁 (`, 𝜎2) and 𝜖𝑖 ∼ 𝑁 (0, 𝑣2). We observe 𝑌𝑖 and only care about
acquiring an estimate of `.

Definition 2. \̂𝑛 is an unbiased estimator of \ if 𝐸 [\̂𝑛] = \ . It is consistent or asymptotically unbiased

if \̂𝑛
𝑝
→ \ . It is asymptotically normal if 𝑔(𝑛) (\̂𝑛 − \ )

𝑑→ 𝑁 (0, Σ), where 𝑔(𝑛) → ∞ as 𝑛 → ∞. We call
𝑔(𝑛) the rate of convergence.

Example 3. Suppose we have an i.i.d. sample of observations {𝑋𝑖}𝑛𝑖=1 and we know 𝑋𝑖 ∼ 𝑁 (`, 𝜎2). A
natural estimator for ` is the sample analog 𝑋𝑛 = 𝑛−1 ∑𝑛

𝑖=1𝑋𝑖 . Note that 𝑋𝑛 ∼ 𝑁 (`, 𝜎2

𝑛
) and is unbiased,

consistent, and asymptotically normal. The rate of convergence is
√
𝑛. Note that the rate of convergence

is unique.
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1.2 Statistical Inference 1 FUNDAMENTALS

1.2.2 Hypothesis Testing

Suppose we want to perform hypothesis testing where the null hypothesis is𝐻0, and the significance level
is 𝛼 . A test is a function 𝜙𝑛 = 𝜙𝑛 ({𝑊𝑖}𝑛𝑖=1) that takes values between 0 and 1. Usually, 𝜙𝑛 = 1 means
rejecting the null hypothesis and 𝜙𝑛 = 0 means failing to reject the null hypothesis.

Definition 3. The size of a test is 𝐸𝑃 [𝜙𝑛] for some probability measure 𝑃 that satisfies 𝐻0. The test is
consistent in level if lim sup𝑛→∞ 𝐸𝑃 [𝜙𝑛] ≤ 𝛼 . The power of a test is 𝐸𝑃 ′ [𝜙𝑛] for some 𝑃 ′ that does not
satisfies 𝐻0.

Example 4. 𝜙𝑛 = 1{|𝑡 | > 𝑇 } for some critical value 𝑇 .

Type-I error refers to rejecting when the null hypothesis is true. The probability of Type-I error is
the size. Type-II error refers to not rejecting when the null hypothesis is false. The probability of Type-II
error is (1 − 𝑝𝑜𝑤𝑒𝑟 ), which depends on the true probability measure.

Example 5. (A trivial test that is consistent in level) Let 𝜙𝑛 = 𝛼 . Then it is consistent in level. In fact, it
has correct size for each 𝑛.

Example 6. In the previous example, consider the null hypothesis 𝐻0 : ` = `0. Let 𝑞1 and 𝑞2 be the
𝛼/2-quantile and (1 − 𝛼/2)-quantile of 𝑁 (`0,

𝜎2

𝑛
), respectively. Then,

Pr(𝑞1 ≤ 𝑋𝑛 ≤ 𝑞2) = 1 − 𝛼

or under the null hypothesis, there is large probability that 𝑋𝑛 ∈ [𝑞1, 𝑞2] when 𝛼 is small. We can then
construct a test 𝜙𝑛 = 𝜙𝑛 (𝑋1, 𝑋2, . . . , 𝑋𝑛) ∈ [0, 1] such that 𝜙𝑛 = 1{𝑋𝑛 ∉ [𝑞1, 𝑞2]}. In this example, the size
is just 𝛼 . Under some alternative ` = `1 where `1 ≠ `0, the Type-II error is 𝐹`1 (𝑞2) − 𝐹`1 (𝑞1), where 𝐹`1 is
the c.d.f. of 𝑋𝑛 under ` = `1.

1.2.3 Confidence Regions

A confidence region is a random set 𝐶𝑛 = 𝐶𝑛 ({𝑊𝑖}𝑛𝑖=1) such that lim inf𝑛→∞ Pr(\ ∈ 𝐶𝑛) ≥ 1 − 𝛼 , where
\ is the parameter of interest and 𝛼 is significant level. Note that the probability is taken over 𝐶𝑛 .

Example 7. In our previous example, let𝐶𝑛 = [𝑝1, 𝑝2], where 𝑝1 and 𝑝2 are the 𝛼/2-quantile and (1−𝛼/2)-
quantile of𝑁 (𝑋𝑛, 𝜎

2

𝑛
), respectively. Notice that Pr(𝑝1 ≤ ` ≤ 𝑝2) = Pr(𝑝1−𝑋𝑛 ≤ `−𝑋𝑛 ≤ 𝑝2−𝑋𝑛), implying

Pr(` ∈ 𝐶𝑛) = 1 − 𝛼 .

Remark.
1. In the above example, the exact distribution of the estimator can be calculated. In more general cases

where distribution of the estimator cannot be obtained, we usually use CLT to derive the asymptotic
distribution and perform hypothesis testing (or constructing confidence region). That is why we
need lim inf𝑛→∞ Pr(\ ∈ 𝐶𝑛) ≥ 1 − 𝛼 instead of just Pr(\ ∈ 𝐶𝑛) ≥ 1 − 𝛼 .

2. Hypothesis testing and constructing the confidence region are equivalent in the sense that the
confidence region can be obtained by inverting the test. Let 𝜙𝑛 (𝑡) denote the test of 𝐻0 : \ = 𝑡

and can only take on 1 or 0 (either rejecting or not rejecting with probability one), then we have

9



1.3 Linear Models 1 FUNDAMENTALS

lim sup𝑛→∞ 𝐸𝑃 [𝜙𝑛 (\ )] ≤ 𝛼 . Construct the confidence region by inverting the test such that 𝐶𝑛 =

{𝑡 ∈ Θ : 𝜙𝑛 (𝑡) = 0}. Then

lim inf
𝑛→∞

Pr(\ ∈ 𝐶𝑛) = lim inf
𝑛→∞

Pr(𝜙𝑛 (\ ) = 0) = 1 − lim inf
𝑛→∞

𝐸 [𝜙𝑛 (\ )] ≥ 1 − 𝛼.

1.3 Linear Models

1.3.1 Interpretations

Suppose we have a data sample of {(𝑋𝑖 , 𝑌𝑖)}𝑛𝑖=1 and assume a linear model

𝑌 = 𝑋 ′𝛽 +𝑈 ,

where 𝑌 and𝑈 are scalars, and 𝑋 and 𝛽 are 𝑘-dimensional vectors. There are three interpretations of this
linear regression equation.

Interpretation 1. (Linear Conditional Expectation) We assume the conditional expectation of 𝑌 is
linear in 𝑋 , i.e. 𝐸 [𝑌 |𝑋 ] = 𝑋 ′𝛽 . Then, we must have mean independence or 𝐸 [𝑈 |𝑋 ] = 0.

Interpretation 2. (Best Linear Predictor) Here 𝐸 [𝑌 |𝑋 ] is not necessarily linear in 𝑋 . Let

𝛽 = arg min
𝑏∈R𝑘

𝐸 [(𝑌 − 𝑋 ′𝑏)2],

then𝑋 ′𝛽 is the best predictor of𝑌 among all functions that is linear in𝑋 . Note that we only have 𝐸 [𝑋𝑈 ] =
0, which is weaker than mean independence.

Interpretation 3. (Linear Causal Model) 𝑋 is the observed determinant of 𝑌 and𝑈 is the unobserved
determinant. The relationship between 𝑋 and𝑈 is not determined by the model.

1.3.2 OLS

The standard procedure of estimating a statistical model is
(i) propose an estimator
(ii) show consistency
(iii) derive its asymptotic distribution.

Suppose we have i.i.d. data {(𝑋𝑖 , 𝑌𝑖)}𝑛𝑖=1, where for each 𝑖 , 𝑌𝑖 is a scalar and 𝑋𝑖 is a 𝑘-dimensional vector.
Consider the linear model

𝑌 = 𝑋 ′𝛽 +𝑈 ,

where 𝑌 and 𝑈 are scalars, and 𝑋 and 𝛽 are 𝑘-dimensional column vectors. It can have any of the above
interpretations, which depends on your research question. We consider the set of assumptions:

Assumption 1. [A1]: 𝐸 [𝑋𝑈 ] = 0.
[A1’]: 𝐸 [𝑈 |𝑋 ] = 0.
[A1”]: 𝐸 [𝑈 ] = 0 and 𝑋 ⊥ 𝑈 .

Assumption 2. [A2]: 𝐸 [𝑋𝑋 ′] < ∞ and is non-singular.

10



1.3 Linear Models 1 FUNDAMENTALS

Assumption 3. [A3]: 𝐸 [𝑋𝑋 ′𝑈 2] < ∞.
[A3’]: 𝐸 [𝑈 2 |𝑋 ] = 𝜎2 < ∞.

Remark. Note that [A1”]⊂[A1’]⊂[A1]. Under [A2], [A3’]⊂[A3]. The error is said to be homoskedastic
if 𝑉𝑎𝑟 [𝑈 |𝑋 ] does not vary with 𝑋 . Alternatively, if it does, then it is heteroskedastic. In terms of our
assumptions, we need [A1’] and [A3’] for𝑈 to be homoskedastic.

Under [A1] (or stronger assumptions), the linear model can be rewritten as

𝐸 [𝑋𝑌 ] = 𝐸 [𝑋𝑋 ′]𝛽 + 𝐸 [𝑋𝑈 ] = 𝐸 [𝑋𝑋 ′]𝛽.

Under [A2],
𝛽 = 𝐸 [𝑋𝑋 ′]−1𝐸 [𝑋𝑌 ] .

Therefore, we propose the OLS estimator using the sample analog

𝛽𝑂𝐿𝑆 =

(
1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖𝑋
′
𝑖

)−1 (
1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖𝑌𝑖

)
.

Note that

𝛽𝑂𝐿𝑆 = 𝛽 +
(

1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖𝑋
′
𝑖

)−1 (
1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖𝑈𝑖

)
.

Under [A1’] or [A1”], 𝛽 is unbiased.
By WLLN and CMT, 𝛽𝑂𝐿𝑆

𝑝
→ 𝛽 . Note that to show consistency, we only need [A1] and [A2].

Under [A1], [A2], and [A3],

√
𝑛(𝛽𝑂𝐿𝑆 − 𝛽) =

(
1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖𝑋
′
𝑖

)−1 (
1
√
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖𝑈𝑖

)
𝑑→ 𝑁 (0, 𝐸 [𝑋𝑋 ′]−1𝐸 [𝑋𝑋 ′𝑈 2]𝐸 [𝑋𝑋 ′]−1),

by CMT, WLLN, and CLT. Define the asymptotic covariance matrix as

𝑉 = 𝐸 [𝑋𝑋 ′]−1𝐸 [𝑋𝑋 ′𝑈 2]𝐸 [𝑋𝑋 ′]−1.

Case 1: [A3’] (homoskedasticity)
Then 𝑉 = 𝜎2𝐸 [𝑋𝑋 ′]. A consistent estimator of 𝑉 is 𝑉ℎ𝑜𝑚 = �̂�2(𝑛−1 ∑

𝑖 𝑋𝑖𝑋
′
𝑖 ), where �̂�2 = 𝑛−1 ∑

𝑖 𝑈
2
𝑖

and𝑈𝑖 = 𝑌𝑖 − 𝑋 ′
𝑖 𝛽𝑂𝐿𝑆 . Consistency: By WLLN and CMT

�̂�2 =
1
𝑛

∑︁
𝑖

(𝑌𝑖 − 𝑋 ′
𝑖 𝛽𝑂𝐿𝑆 )2

=
1
𝑛

∑︁
𝑖

(𝑋 ′
𝑖 (𝛽 − 𝛽𝑂𝐿𝑆 ) +𝑈𝑖)2

= (𝛽 − 𝛽𝑂𝐿𝑆 )′
(

1
𝑛

∑︁
𝑖

𝑋𝑖𝑋
′
𝑖

)
(𝛽 − 𝛽𝑂𝐿𝑆 ) + 2

(
1
𝑛

∑︁
𝑖

𝑈𝑖𝑋
′
𝑖

)
(𝛽 − 𝛽𝑂𝐿𝑆 ) +

1
𝑛

∑︁
𝑖

𝑈 2
𝑖

�̂�2 𝑝
→ 𝜎2,

11



1.3 Linear Models 1 FUNDAMENTALS

so by WLLN and CMT
𝑉ℎ𝑜𝑚

𝑝
→ 𝜎2𝐸 [𝑋𝑖𝑋 ′

𝑖 ] .

Case 2: [A3] (heteroskedasticity)
A consistent estimator of 𝑉 is the sample analog:

𝑉ℎ𝑒𝑡 =

(
1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖𝑋
′
𝑖

)−1 (
1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖𝑋
′
𝑖𝑈

2
𝑖

) (
1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖𝑋
′
𝑖

)−1

,

where the residual𝑈𝑖 = 𝑌𝑖 − 𝑋 ′
𝑖 𝛽𝑂𝐿𝑆 .

1.3.3 Efficiency

An estimator is efficient when it achieves the lowest variance possible. Or we can say an estimator is
more efficient when it has a lower variance than another estimator.

Example 8. For i.i.d. sample {𝑋𝑖}𝑛𝑖=1 where 𝐸 [𝑋𝑖] = ` < ∞ and 𝑉𝑎𝑟 [𝑋𝑖] = 𝜎2 < ∞, we propose two
estimators for `, ˆ̀1 = (𝑛/2)−1 ∑

𝑖 𝑜𝑑𝑑 𝑋𝑖 and ˆ̀2 = 𝑋𝑛 . Both estimators are consistent, but 𝑉𝑎𝑟 [ ˆ̀1] =

2𝜎2/𝑛 > 𝜎2/𝑛 = 𝑉𝑎𝑟 [ ˆ̀2]. We say ˆ̀2 is more efficient than ˆ̀1.

Example 9. We say a square matrix 𝑀 ∈ R𝑘×𝑘 is positive semi-definite if ∀𝑥 ∈ R𝑘 , 𝑥 ′𝑀𝑥 ≥ 0. If
estimator 𝛽1 and 𝛽2 are 𝑘-dimensional vectors, we say 𝛽1 is more efficient than 𝛽2 if 𝑉𝑎𝑟 [𝛽2] −𝑉𝑎𝑟 [𝛽1] is
positive semi-definite. The intuition is that a linear combination of 𝛽1 will always have a lower variance
of the same linear combination of 𝛽2, i.e. 𝑉𝑎𝑟 [𝑐′𝛽2] −𝑉𝑎𝑟 [𝑐′𝛽1] = 𝑐′(𝑉𝑎𝑟 [𝛽2] −𝑉𝑎𝑟 [𝛽1])𝑐 ≥ 0.

Theorem 5. (Gauss-Markov Theorem) Assume i.i.d. sampling, 𝐸 [𝑈 |𝑋 ] = 0 and 𝐸 [𝑈 2 |𝑋 ] = 𝜎2. Then
the OLS estimator 𝛽𝑂𝐿𝑆 is the best linear unbiased estimator (BLUE), i.e. among all estimators 𝛽 of
the form 𝛽 =

∑𝑛
𝑖=1 𝑎𝑖𝑌𝑖 with 𝑎𝑖 = 𝑎𝑖 ({𝑋𝑖}𝑛𝑖=1) being a 𝑘-dimensional function of the regressors, such that

𝐸 [𝛽 |𝑋1, . . . , 𝑋𝑛] = 𝛽 , we must have 𝛽𝑂𝐿𝑆 = arg min
𝛽
𝑉𝑎𝑟 [𝛽 |𝑋1, . . . , 𝑋𝑛].

Proof. Let Y = (𝑌1, . . . , 𝑌𝑛)′ and X = (𝑋1, . . . , 𝑋𝑛)′. Let 𝛽 = 𝐴Y where 𝐴 is a function of X. Write

𝛽 = 𝛽𝑂𝐿𝑆 + 𝐷Y

for 𝐷 = 𝐴 − (X′X)−1X. Then 𝛽 is unbiased only when 𝐸 [𝐷Y|X] = 𝐷X𝛽 = 0 for each 𝛽 , implying 𝐷X = 0.
Thus,

𝑉𝑎𝑟 [𝛽 |X] = 𝐴𝑉𝑎𝑟 [Y|X]𝐴′

= 𝜎2(𝐷 + (X′X)−1X′) (𝐷 + (X′X)−1X′)′

= 𝜎2𝐷𝐷 ′ + 𝜎2(X′X)−1 ≥ 𝑉𝑎𝑟 [𝛽𝑂𝐿𝑆 |X] .

□

In more general cases, 𝑈 is heteroskedastic (𝐸 [𝑈 2 |𝑋 ] is a function of 𝑋 ). Suppose 𝐸 [𝑈 |𝑋 ] = 0 and
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1.3 Linear Models 1 FUNDAMENTALS

𝐸 [𝑈 2 |𝑋 = 𝑥] = 𝜎2(𝑥), then the linear model can be written as

1
𝜎 (𝑋 )𝑌 =

1
𝜎 (𝑋 )𝑋

′𝛽 + 1
𝜎 (𝑋 )𝑈 ,

or equivalently a transformed linear model such that

𝑌 ∗ = (𝑋 ∗)′𝛽 +𝑈 ∗,

where 𝑌 ∗ = 𝑌/𝜎 (𝑋 ), and etc. Note that this is a linear model with homoskedasticity since

[A1’] : 𝐸 [𝜎 (𝑋 )−1𝑈 |𝜎 (𝑋 )−1𝑋 ] = 𝐸 [𝐸 [𝜎 (𝑋 )−1𝑈 |𝑋, 𝜎 (𝑋 )−1𝑋 ] |𝜎 (𝑋 )−1𝑋 ] = 0.

[A3’] : 𝐸 [(𝜎 (𝑋 )−1𝑈 )2 |𝜎 (𝑋 )−1𝑋 ] = 𝐸 [𝐸 [𝜎 (𝑋 )−2𝑈 2 |𝑋, 𝜎 (𝑋 )−1𝑋 ] |𝜎 (𝑋 )−1𝑋 ] = 1.

By Gauss-Markov Theorem, OLS regression of 𝜎 (𝑋 )−1𝑌 on 𝜎 (𝑋 )−1𝑋 yields an efficient estimator. This is
called the generalized least square estimator (GLS), which is

𝛽𝐺𝐿𝑆 =

(
1
𝑛

𝑛∑︁
𝑖=1

1
𝜎2(𝑋𝑖)

𝑋𝑖𝑋
′
𝑖

)−1 (
1
𝑛

𝑛∑︁
𝑖=1

1
𝜎2(𝑋𝑖)

𝑋𝑖𝑌𝑖

)
.

Exercise 2. Derive consistency and the limiting distribution for 𝛽𝐺𝐿𝑆 .

We can show 𝛽𝐺𝐿𝑆 is unbiased, consistent, and asymptotically normal. Also, by the Gauss-Markov
theorem, for each 𝛽 = 𝐴Y∗ such that 𝐸 [𝛽 |X∗] = 𝛽 , we must have

𝑉𝑎𝑟 [𝛽 |𝑋 ∗
1 , . . . , 𝑋

∗
𝑛] −𝑉𝑎𝑟 [𝛽𝐺𝐿𝑆 |𝑋 ∗

1 , . . . , 𝑋
∗
𝑛] ≥ 0,

i.e. the difference between the two matrices is positive semi-definite.
Note that in practice, GLS is infeasible, since we don’t observe 𝜎2(𝑋𝑖) from the sample. We now need

extra assumptions from our economic model to proceed. For example, if your intuition says the conditional
variance is quadratic in 𝑋 , then you may assume

𝐸 [𝑈 2 |𝑋 ] = 𝑎𝑋 2 + 𝑏𝑋 + 𝑐,

for some unknown parameters 𝑎, 𝑏, 𝑐 . Note that this is again a conditional expectation relationship, and an
OLS estimator of 𝑈 2 on 𝑋 is consistent. Since we do not observe 𝑈 , we use the OLS regression residuals
𝑈𝑖 = 𝑌𝑖 − 𝑋 ′

𝑖 𝛽𝑂𝐿𝑆 to estimate (𝑎, 𝑏, 𝑐) and obtain (𝑎,𝑏, 𝑐). Finally, we replace 𝜎2(𝑋𝑖) in the formula of GLS
by �̂�2(𝑋𝑖) = 𝑎𝑋 2

𝑖 + 𝑏𝑋𝑖 + 𝑐 . This is called a feasible generalized least square estimator (FGLS). The
general procedure is outlined in the following Algorithm.
Note that in Step 2, there is no guarantee that your estimates will yield a meaningful variance in such
that �̂� (𝑋𝑖) ≥ 0 for each 𝑖 . Generally, this will not cause problems in the limit as long as your conditional
variance is correctly specified.
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Algorithm 1 Feasible Generalized Least Squares (FGLS)
1. Do OLS and form the residuals𝑈𝑖 = 𝑌𝑖 − 𝑋 ′

𝑖 𝛽𝑂𝐿𝑆 .
2. Propose a model for conditional variance of the disturbance:

𝐸 [𝑈 2 |𝑋 = 𝑥] = 𝜎2(𝑥),

where 𝜎2 : R𝑘 → R. Exploit the relationship between 𝑈 2
𝑖 and 𝑋𝑖 to obtain a function estimator

�̂�2(𝑥).
3. The FGLS estimator is

𝛽𝐹𝐺𝐿𝑆 =

(
1
𝑛

𝑛∑︁
𝑖=1

1
�̂�2(𝑋𝑖)

𝑋𝑖𝑋
′
𝑖

)−1 (
1
𝑛

𝑛∑︁
𝑖=1

1
�̂�2(𝑋𝑖)

𝑋𝑖𝑌𝑖

)
.

1.4 MLE, GMM, and𝑀-Estimators

1.4.1 Maximum Likelihood Estimation

Unconditional Likelihood

Suppose we observed a data sample {𝑋𝑖}𝑛𝑖=1, where the joint density is 𝑝𝑋 (𝑥1, 𝑥2, . . . , 𝑥𝑛 ;\0) and \ ∈ Θ.
Assume for each \ ∈ Θ, the density function 𝑝𝑋 (𝑥1, 𝑥2, . . . , 𝑥𝑛 ;\ ) exists. The likelihood function of
this sample is defined by ℓ𝑛 (\ ) ≡ ℓ𝑛 (\ |𝑋1, . . . , 𝑋𝑛) = 𝑝𝑋 (𝑋1, . . . , 𝑋𝑛 ;\ ). The log-likelihood function is
defined by 𝐿𝑛 (\ ) = 𝑛−1 log ℓ𝑛 (\ ). TheMaximum Likelihood (ML) estimator is defined by

\̂𝑀𝐿 = arg max
\ ∈Θ

ℓ𝑛 (\ ) = arg max
\ ∈Θ

𝐿𝑛 (\ ) .

Example 10. Suppose we have i.i.d. sampling and for each 𝑖 , 𝑋𝑖 has density 𝑝 (𝑥 ;\0). Then the likelihood
is ℓ𝑛 (\ ) =

∏𝑛
𝑖=1 𝑝 (𝑋𝑖 ;\ ). The log-likelihood is 𝐿𝑛 (\ ) = 𝑛−1 ∑𝑛

𝑖=1 log𝑝 (𝑋𝑖 ;\ ).

Example 11. Suppose the data sample is not i.i.d. and follows AR(1) such that 𝑋𝑖 = 𝜌𝑋𝑖−1 + 𝑈𝑖 , 𝑈𝑖 𝑖 .𝑖 .𝑑.∼
𝑁 (0, 𝜎2) and 𝑋0 = 0 is non-random. The parameter of interest is \ = (𝜌, 𝜎2). Then, the density can be
written as

𝑝𝑋 (𝑥1, . . . , 𝑥𝑛 ;\ ) = 𝑝𝑋𝑛 |𝑋1,...,𝑋𝑛−1 (𝑥𝑛 |𝑥1, . . . , 𝑥𝑛−1;\ ) × · · · × 𝑝𝑋1 (𝑥1 |\ ) =
𝑛∏
𝑖=1

𝑝𝑋𝑖 |𝑋𝑖−1 (𝑥𝑖 |𝑥𝑖−1;\ ),

where 𝑝𝑋𝑖 |𝑋𝑖−1 is the density of 𝑁 (𝜌𝑥𝑖−1, 𝜎
2).

Example 12. Let 𝑋𝑖 follow i.i.d. uniform distribution on [0, \0] with 0 < \0 < ∞. Then, 𝑝 (𝑥 ;\ ) =

\−1
1{0 ≤ 𝑥 ≤ \ } and ℓ𝑛 (\ ) = \−𝑛1{0 ≤ 𝑋1, . . . , 𝑋𝑛 ≤ \ }. The ML estimator for \0 is \̂𝑀𝐿 = max𝑖 𝑋𝑖 .

14
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Conditional Likelihood

Suppose now we have data on both 𝑋 and 𝑌 with the sample {(𝑌𝑖 , 𝑋𝑖)}𝑛𝑖=1. The condition density of all 𝑌𝑖 ’s
on all 𝑋𝑖 ’s is 𝑝𝑌 |𝑋 (𝑦1, . . . , 𝑦𝑛 |𝑥1, . . . , 𝑥𝑛 ;\0). The conditional likelihood is defined by

ℓ𝑛 (\ ) = 𝑝𝑌 |𝑋 (𝑌1, . . . , 𝑌𝑛 |𝑋1, . . . , 𝑋𝑛 ;\ ) .

TheML estimator is defined accordingly. Similarly, if the sample is i.i.d. with conditional density𝑝𝑌 |𝑋 (𝑦 |𝑥 ;\ ),
the likelihood function is just ℓ𝑛 (\ ) =

∏𝑛
𝑖=1 𝑝 (𝑌𝑖 |𝑋𝑖 ;\ ) and the log-likelihood is𝐿𝑛 (\ ) = 𝑛−1 ∑𝑛

𝑖=1 log𝑝 (𝑌𝑖 |𝑋𝑖 ;\ ).

Example 13. We revisit the linear model 𝑌 = 𝑋 ′𝛽 + 𝑈 and assume 𝑋 ⊥ 𝑈 and 𝑈 𝑖 .𝑖 .𝑑.∼ 𝑁 (0, 𝜎2). Let the
parameter of interest be \ = (𝛽, 𝜎2). The conditional density is

𝑝 (𝑦 |𝑥 ;\ ) = 1
√

2𝜋𝜎
exp

(
− (𝑦 − 𝑥 ′𝛽)2

2𝜎2

)
and the log-likelihood is

𝐿𝑛 (\ ) =
1
𝑛

𝑛∑︁
𝑖=1

− log(
√

2𝜋𝜎) − (𝑦 − 𝑥 ′𝛽)2

2𝜎2 .

We take the first order condition w.r.t. 𝛽 of the log-likelihood and that gives us that
∑𝑛
𝑖=1𝑋𝑖 (𝑌𝑖 −𝑋 ′

𝑖 𝛽) = 0.
Solving the first order condition to 𝛽 yields that

𝛽𝑀𝐿 =

(
1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖𝑋
′
𝑖

)−1
1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖𝑌𝑖 = 𝛽𝑂𝐿𝑆 .

This equivalence of the maximum likelihood estimator and the OLS estimator is generally not true but
holds in the this specific setup. Because ML estimation requires extra distributional assumptions, the ML
estimator is expected to outperform estimators that do not require these types of assumptions.

Exercise 3. Derive the formula of �̂�2
𝑀𝐿

.

Example 14. Suppose
𝑌𝑖 = 1{𝑋 ′\0 +𝑈 ≥ 0}

where𝑈 follows some distribution 𝐹 . Then the conditional density is

𝑝 (𝑦 |𝑥 ;\ ) = (1 − 𝐹 (−𝑥 ′\ ))𝑦𝐹 (−𝑥 ′\ )1−𝑦

and the log-likelihood is

𝐿𝑛 (\ ) =
1
𝑛

𝑛∑︁
𝑖=1

𝑌𝑖 log(1 − 𝐹 (−𝑋 ′
𝑖 \ )) + (1 − 𝑌𝑖) log 𝐹 (−𝑋 ′

𝑖 \ ) .

In general, there is no analytical solution to the maximization problem. If 𝐹 is standard normal, this model
is called a Probit model. It is called a Logit model when

𝐹 (𝑢) = exp(𝑢)
(1 + exp(𝑢)) .
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The ML estimator can be solved efficiently in these two models.

1.4.2 Generalized Method of Moments

Method of moments are for a class of estimators that are solved for by equating the sample analog of
the moments to the populations ones. Common estimators can be written under a method of moments
framework. Examples include

[OLS]: 𝐸 [𝑋 (𝑌 − 𝑋 ′
𝑖 𝛽)] = 0

[IV]: 𝐸 [𝑍 (𝑌 − 𝑋 ′
𝑖 𝛽)] = 0

[2SLS]: 𝜋 ′𝐸 [𝑍 (𝑌 − 𝑋 ′
𝑖 𝛽)] = 0, where 𝜋 = 𝐸 [𝑍𝑍 ′]−1𝐸 [𝑍𝑋 ].

[ML]: 𝐸 [ 𝜕
𝜕\

log𝑝 (𝑌 |𝑋 ;\ )] = 0
In general cases, the solution to the sample analog equations does not necessarily exist. Suppose we

have 𝐽 moments where 𝐸 [𝑚 𝑗 (𝑋,𝑌 ;\0)] = 0 for 𝑗 = 1, . . . , 𝐽 . Let𝑚 = (𝑚1, . . . ,𝑚 𝐽 )′. The GMM estimator
is defined by

\̂𝐺𝑀𝑀 = arg min
\ ∈Θ

(
1
𝑛

𝑛∑︁
𝑖=1

𝑚(𝑋𝑖 , 𝑌𝑖 ;\ )
) ′
𝑊

(
1
𝑛

𝑛∑︁
𝑖=1

𝑚(𝑋𝑖 , 𝑌𝑖 ;\ )
)
,

for some weighting matrix𝑊 .

Exercise 4. Write out OLS, IV, 2SLS, and ML as a GMM estimator.

Consistency and asymptotic normality can be established for each𝑊 , but the question becomes how
canwe choose𝑊 ? It can be shown that efficiency bound is achievedwhen𝑊 = 𝐸 [𝑚(𝑋,𝑌 ;\0)𝑚(𝑋,𝑌 ;\0)′]−1,
where \0 is the true underlying parameter. Notice the similarity to GLS (generalized least square) with this
choice, and the optimal weighting matrix is also infeasible. We can use a feasible 2-step GMM estimator
outlines in the following algorithm.

Algorithm 2 Feasible 2-Step GMM
Step 1: Perform GMM estimation using identity weighting matrix and obtain \̂1.
Step 2: Use the sample analog of the efficient weighting matrix

�̂� =

(
𝑛−1

𝑛∑︁
𝑖=1

𝑚(𝑋𝑖 , 𝑌𝑖 ; \̂1)𝑚(𝑋𝑖 , 𝑌𝑖 ; \̂1)′
)−1

and perform the GMM estimation again to attain \̂2

The resulting estimator, \̂2, is the 2-step GMM estimator.

These two steps can be further iterated for the iterative GMM estimator.

1.4.3 𝑀-estimator

An𝑀-estimator is defined by minimizing a sum over a function of the sample, i.e.

\̂𝑀 = arg min
\ ∈Θ

𝑛∑︁
𝑖=1

𝑓 (𝑋𝑖 , 𝑌𝑖 ;\ ) .
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Examples of𝑀-estimators are OLS and ML estimators.
A much more general version of this estimator is the Extremum estimator, which includes many

popular estimators, including OLS, ML, GMM, and other estimators. It is defined by minimizing some
criterion function, which needs not always be a sum.

\̂𝐸𝐸 = arg min
\ ∈Θ

�̂� (\ ),

where �̂� is a function of the data. With some regularity conditions, consistency and asymptotic normality
can be established.

2 Topics

2.1 Time Series

A time series is a set of repeated observations of the same variable, such as a country’s GDP. We can
denote it as {𝑥1, 𝑥2, . . . , 𝑥𝑇 }or {𝑥𝑡 } for 𝑡 = 1, . . .𝑇 . Here we let 𝑥𝑡 to be a random variable. As such, we can
apply the standard econometric tools from the first section to analyze 𝑥𝑡 . However, the twist that makes it
interesting is that we no longer assume that 𝑥𝑡 is i.i.d. and allow for dependence across time. Intuitively,
this means that GDP at time 𝑡 may depend on GDP at time 𝑡 − 1.

We focus on using parametric models for the joint distribution {𝑥𝑡 }, which allows us to use a few pa-
rameters to characterize the model. Standard time series models include ARMA and ARCH type of models
and useful tools in time series econometrics include vector auto-regression (VAR), stationarity, unit roots,
impulse response functions, error-correction models, martingales, and co-integration. Time series econo-
metrics have a have emphasis on the VAR framework of representing time series models. Thus, it would
be useful to brush up on linear algebra (i.e. eigenvalues/eigenvectors, SVD, Cholesky Decomposition) for
those interested in further exploring this topic. Regardless, we will focus on just linear ARMA models for
this introductory section.

We first define a white noise process 𝜖𝑡 . A standard assumption for white noise is 𝜖𝑡
𝑖 .𝑖 .𝑑.∼ 𝑁 (0, 𝜎2

𝜖 ).
This assumption nests three main implications.

1. 𝐸 [𝜖𝑡 ] = 𝐸 [𝜖𝑡 |𝜖𝑡−1, 𝜖𝑡−2, . . .] = 𝐸 [𝜖𝑡 |I𝑡−1] = 0 where I𝑡−1 represents the information set at period 𝑡 −1
2. 𝐸 [𝜖𝑡𝜖𝑡− 𝑗 ] = 𝐶𝑜𝑣 (𝜖𝑡𝜖𝑡− 𝑗 ) = 0, ∀𝑗 ≠ 𝑡
3. 𝑉𝑎𝑟 (𝜖𝑡 ) = 𝑉𝑎𝑟 (𝜖𝑡 |𝜖𝑡−1, 𝜖𝑡−2, . . .) = 𝑉𝑎𝑟 (𝜖𝑡 |I𝑡−1) = 𝜎2

𝜖

Implications (1) and (2) imply that there is no serial correlation or predictability of 𝜖𝑡 from past values.
Implication (3) implies conditional homoskedasticity, whichmeans conditional on the past information,
there is a constant conditional variance. Note that Implication (1) itself implies 𝜖𝑡 is a martingale difference
sequence.

We will focus on linear combinations of the white noise process. These models include the auto-
regression, AR(p), moving average, MA(q), and auto-regression moving average, ARMA(p,q), models.
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𝐴𝑅(1) : 𝑥𝑡 = 𝜙𝑥𝑡−1 + 𝜖𝑡
𝑀𝐴(1) : 𝑥𝑡 = 𝜖𝑡 + \𝜖𝑡−1

𝐴𝑅(𝑝) : 𝑥𝑡 = 𝜙1𝑥𝑡−1 + · · · + 𝜙𝑝𝑥𝑡−𝑝 + 𝜖𝑡
𝑀𝐴(𝑞) : 𝑥𝑡 = 𝜖𝑡 + \1𝜖𝑡−1 + · · · + \𝑞𝜖𝑡−𝑞

𝐴𝑅𝑀𝐴(𝑝, 𝑞) : 𝑥𝑡 = 𝜙1𝑥𝑡−1 + · · · + 𝜙𝑝𝑥𝑡−𝑝 + 𝜖𝑡 + \𝜖𝑡−1 + · · · \𝑞𝜖𝑡−𝑞

These three types of models all are additive combinations of 𝑥𝑡 , 𝜖𝑡 and their past values.

Remark.
1. These models are assumed to describe a time series with mean zero. Any means will be absorbed by

a constant in the time series.
2. AnAR(1)modelwith |𝜙 | < 1 is stationary, |𝜙 | = 1 has a unit root, and |𝜙 | > 1 is non-stationary/explosive.

To see what these imply let 𝑥0 = 2 plot out the subsequent time series.

Example 15. An stationary AR(1) model can be written as MA(∞) model by recursively substituting.

𝑥𝑡 = 𝜙𝑥𝑡−1 + 𝜖𝑡
= 𝜙 (𝜙𝑥𝑡−2 + 𝜖𝑡−1) + 𝜖𝑡 = 𝜙2𝑥𝑡−2 + 𝜙𝜖𝑡−1 + 𝜖𝑡
= 𝜙𝑘𝑥𝑡−𝑘 + 𝜙𝑘−1𝜖𝑡−𝑘+1 + · · · + 𝜙2𝜖𝑡−2 + 𝜙𝜖𝑡−1 + 𝜖𝑡

So far we have written the AR(1) as a ARMA(𝑘 ,𝑘 − 1). If we let |𝜙 | < 1, then lim𝑘→∞ 𝜙
𝑘𝑥𝑡−𝑘 = 0 so

𝑥𝑡 =

∞∑︁
𝑗=0

𝜙 𝑗𝜖𝑡− 𝑗

which is a MA(∞).

We can also re-write the ARMA class of models with the lag operator 𝐿. Effectively, applying 𝐿 yields

𝐿𝑥𝑡 = 𝑥𝑡−1

and moves the time index back. 𝐿 is an operator that takes in a entire time series ({𝑥𝑡 }𝑇𝑡=1) and yields
another ({𝑥𝑡−1}𝑇𝑡=1). The lag operator can be further generated for some integer 𝑗

𝐿 𝑗𝑥𝑡 = 𝑥𝑡− 𝑗

𝐿− 𝑗𝑥𝑡 = 𝑥𝑡+𝑗

and we can construct lag polynomials,

𝑎(𝐿)𝑥𝑡 = (𝑎0𝐿
0 + 𝑎1𝐿

3)𝑥𝑡 = 𝑎0𝑥𝑡 + 𝑎1𝑥𝑡−3.
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In turn, we can collapse the ARMA models to

𝐴𝑅 : 𝑎(𝐿)𝑥𝑡 = 𝜖𝑡
𝑀𝐴 : 𝑥𝑡 = 𝑏 (𝐿)𝜖𝑡

𝐴𝑅𝑀𝐴 : 𝑎(𝐿)𝑥𝑡 = 𝑏 (𝐿)𝜖𝑡

These lag polynomials have the following general properties:
1. Multiplicativity: 𝑎(𝐿)𝑏 (𝐿) = (𝑎0 + 𝑎𝐿) (𝑏0 + 𝑏𝐿) = 𝑎0𝑏0 + (𝑎0𝑏 + 𝑎𝑏0)𝐿 + 𝑎𝑏𝐿2

2. Commutation: 𝑎(𝐿)𝑏 (𝐿) = 𝑏 (𝐿)𝑎(𝐿)
3. Integer powers: 𝑎(𝐿)2 = 𝑎(𝐿)𝑎(𝐿)
4. Inversion: 𝑎(𝐿) = (1−_1𝐿) (1−_2𝐿) ⇐⇒ 𝑎(𝐿)−1 = (1−_1𝐿)−1(1−_2𝐿)−1 =

∑∞
𝑗=0 _

𝑗

1𝐿
𝑗
∑∞
𝑗=0 _

𝑗

2𝐿
𝑗 =

𝑐1(1 − _1)−1 + 𝑐2(1 − _2)−1 for some constants 𝑐1, 𝑐2 ∈ R.

Exercise 5. Show that a MA(1) models can written as an AR(∞) with Lag operators. For example, note
that the AR(1) can be inverted as

(1 − 𝜙𝐿)𝑥𝑡 = 𝜖𝑡 ⇐⇒ 𝑥𝑡 = (1 − 𝜙𝐿)−1𝜖𝑡 .

Did you need to assume that |\ | < 1 in the MA(1) model for the inversion to work?

In themultivariate case, various ARMAmodels can be stacked into a VAR(1) model (or written as a VAR(1)).
Let 𝑥𝑡 be a multivariate time series,

𝑥𝑡 =


𝑦𝑡

𝑧𝑡


with 𝜖𝑡

𝑖𝑖𝑑∼ 𝑁 (0, Σ) where

𝜖𝑡 =


𝛿𝑡

a𝑡

 , 𝐸 [𝜖𝑡 ] = 0, 𝐸 [𝜖𝑡𝜖′𝑡 ] = Σ =


𝜎2
𝛿

𝜎𝛿a

𝜎𝛿a 𝜎2
a

 , 𝐸 [𝜖𝑡𝜖
′
𝑡− 𝑗 ] = 0

for some integer 𝑗 ≠ 𝑡 . The VAR(1) is then 𝑥𝑡 = 𝜙𝑥𝑡−1 + 𝜖𝑡 or equivalently
𝑦𝑡

𝑧𝑡

 =


𝜙𝑦𝑦 𝜙𝑦𝑧

𝜙𝑧𝑦 𝜙𝑧𝑧



𝑦𝑡−1

𝑧𝑡−1

 +

𝛿𝑡

a𝑡


or

𝑦𝑡 =𝜙𝑦𝑦𝑦𝑡−1 + 𝜙𝑦𝑧𝑧𝑡−1 + 𝛿𝑡
𝑧𝑡 =𝜙𝑧𝑦𝑦𝑡−1 + 𝜙𝑧𝑧𝑧𝑡−1 + a𝑡 .

Note that the lags for 𝑦 and 𝑧 appear in the top and bottom equations and the VAR(1) captures the cross-
variable time series dynamics. Multivariate ARMA models can be manipulated and inverted in a similar
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manner to the univariate case. The VAR approach implies that time series analysis heavily uses linear
algebra and matrix operations.

Exercise 6. Stack three time series together in a VAR(1)

2.2 Bayesian Approach

The econometrics treatment in Section 1 ismainly frequentist. The recipe thatwe followedwhen proposing
a new estimator is appeal to asymptotics (𝑛 → ∞) with the WLLN and CLT to respectively derive the
consistency and limiting distribution of the proposed estimator. This approach notably (1) does not use
our prior knowledge about what the estimator (2) requires 𝑛 to tend to infinity for our confidence intervals
to hold.

If we have domain knowledge about the problem or have a sense of the what the estimate will be
like from prior studies or data, we may want to put a prior distribution on the estimator. The prior
should bake in the our a priori beliefs on the estimate and should be set ideally before looking at the data.
The likelihood is then estimated from the data as from Section 1.4. The posterior distribution is the
probability distribution of the estimate after considering your prior and your data/likelihood estimate.

More formally, we let \ be the parameter of interest, \ ∼ 𝜋 (\ ) be the prior, and 𝑓 (𝑥 |\ ) be the likelihood.
Then the posterior density 𝜋 (\ |𝑥) arises from Bayes Theorem

𝜋 (\ |𝑥) = 𝑓 (𝑥 |\ )𝜋 (\ )∫
𝑓 (𝑥 |\ )𝜋 (\ )𝑑\

=
1

𝑍 (𝑥) 𝑓 (𝑥 |\ )𝜋 (\ ) ∝ 𝑓 (𝑥 |\ )𝜋 (\ )

where 𝑍 (𝑥) =
∫
𝑓 (𝑥 |\ )𝜋 (\ )𝑑\ is the marginal density of 𝑥 and is also called the partition function.

The Bayesian Approach is often termed “finite sample precise”. This means the posterior distribution
will hold for a finite𝑛. Further, as𝑛 → ∞, we should recover the frequentist estimate by Bernstein-vonMises
Theorem. Intuitively, this means that as 𝑛 tends to infinity, the likelihood should dominate the posterior
and the prior should have little to no influence on the posterior. In applied work, 𝑛 → ∞ is unattainable
so a frequentist approach implicitly assumes that the asymptotic case is a good assumption to the problem
for quantifying uncertainty. If it is not, then finite-sample bias may occur and the subsequent estimate can
biased.

Since the approach requires a stance (or choice) on the distribution of the prior and likelihood, the
full posterior can be informative and can be used for Bayesian Decision Theory. Often the posterior mode
or mean is used as a point estimate and the 95% high probability posterior interval (or credible region or
interval) is used for uncertainty quantification. More generally, knowledge of the posterior distribution
can also let us estimate posterior expectations for some function (or decision) of the parameters ℎ(\ ),

𝐸𝜋 (\ |𝑥 ) [ℎ(\ )] =
∫

ℎ(\ )𝜋 (\ |𝑥)𝑑\

and to get the posterior mean we would choose ℎ(\ ) = \ .

Example 16. (Bayesian Linear Regression) We consider the linear regression of response variable 𝑦 on a
vector of 𝑝 covariates 𝑋 , and have

𝑦 = 𝑋 ′𝛽 + 𝜖
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where 𝜖 𝑖 .𝑖 .𝑑.∼ 𝑁 (0, 𝜎2𝐼 ) where 𝜎2 > 0 is a constant and known a priori. 𝐼 is the identity matrix that has
dimensions 𝑝 × 𝑝 . 𝛽 is the coefficient of interest.

Then from our modeling assumptions, the response variable is generated from the distribution

𝑦 ∼ 𝑁 (𝑋 ′𝛽, 𝜎2𝐼 ) .

We impose prior 𝑃 (𝛽 |𝑋 ) on 𝛽 and have likelihood 𝑃 (𝑦 |𝛽,𝑋 ). Then, Bayes Rule yields the posterior

𝑃 (𝛽 |𝑦,𝑋 ) = 𝑃 (𝑦 |𝛽, 𝑋 )𝑃 (𝛽 |𝑋 )∫
𝑃 (𝑦 |𝛽,𝑋 )𝑃 (𝛽 |𝑋 )𝑑𝛽

=
𝑃 (𝑦 |𝛽,𝑋 )𝑃 (𝛽 |𝑋 )

𝑃 (𝑦 |𝑋 ) ∝ 𝑃 (𝑦 |𝛽,𝑋 )𝑃 (𝛽 |𝑋 ).

As the number of data points tend to infinity, we should expect the likelihood to wash out the prior and
thus recover the standard OLS/ML estimate in the linear regression setup.

Example 17. (Bernstein-von Mises Theorem Intuition) To provide intuition for the “likelihood washes
out the prior as the number of data points go to infinity” we will work out the following linear regression
example where the Bayesian MAP (maximum a posteriori) estimate is the OLS estimate as 𝑛 → ∞. The
Bayesian MAP estimate is the mode of the posterior distribution.

We consider linear model𝑌 = 𝑋𝛽+𝑈 where we observe data {𝑥𝑖 , 𝑦𝑖}𝑛𝑖=1. Our data set is of size 𝑛 and for
simplicity we have only one variable in 𝑋 so 𝛽 is a one dimensional parameter. We assume𝑈 𝑖 .𝑖 .𝑑.∼ 𝑁 (0, 1)
and impose a prior 𝜋 (𝛽 |𝑋 ) = 𝜋 (𝛽) = 𝑁 (0, 1) on 𝛽 . We will show the MAP estimate will be same as the
OLS estimate of 𝛽 , or 𝛽 = (𝐸 [𝑋 ′𝑋 ])−1𝐸 [𝑋𝑌 ] as 𝑛 → ∞.

Since𝑈 𝑖 .𝑖 .𝑑.∼ 𝑁 (0, 1) so 𝑌 𝑖 .𝑖 .𝑑.∼ 𝑁 (𝑋𝛽, 1). Then, the conditional density is

𝑝 (𝑦𝑖 |𝑥𝑖 ; 𝛽) =
1

√
2𝜋

exp(− (𝑦𝑖 − 𝑥𝑖𝛽)2

2
)

and our likelihood is

𝑓 (𝑦 |𝛽,𝑋 ) = 1
√

2𝜋

𝑛∏
𝑖=1

exp(− (𝑦𝑖 − 𝑥𝑖𝛽)2

2
).

Our prior on 𝛽 is 𝑁 (0, 1), which has density

𝑃 (𝛽 |𝑋 ) = 1
√

2𝜋
exp(−𝛽

2

2
).

Then from Bayes’ Rule, we have the posterior,

𝑃 (𝛽 |𝑦,𝑋 ) = 𝑓 (𝑦 |𝛽, 𝑋 )𝑃 (𝛽 |𝑋 )∫
𝑓 (𝑦 |𝛽,𝑋 )𝑃 (𝛽 |𝑋 )𝑑𝛽

∝ 𝑓 (𝑦 |𝛽, 𝑋 )𝑃 (𝛽 |𝑋 )

∝ 1
2𝜋

exp(−𝛽
2

2
)
𝑛∏
𝑖=1

exp(− (𝑦𝑖 − 𝑥𝑖𝛽)2

2
)

∝ 1
2𝜋

exp
(
− 𝛽2

2
−

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑥𝑖𝛽)2

2
)
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2.2 Bayesian Approach 2 TOPICS

The MAP estimate is the 𝛽 value that maximizes the posterior density (or the posterior mode), then

𝛽𝑀𝐴𝑃 = arg max
𝛽

𝑃 (𝛽 |𝑦,𝑋 )

= arg max
𝛽

1
𝑛

log
(
𝑃 (𝛽 |𝑦,𝑋 )

)
= arg max

𝛽

1
𝑛

log
(

1
2𝜋

exp
(
− 𝛽2

2
−

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑥𝑖𝛽)2

2
) )

= arg max
𝛽

1
2𝑛

(
− 𝛽2 −

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑥𝑖𝛽)2) .
Taking the FOC to 𝛽 ,

1
2𝑛

(−2𝛽 + 2
𝑛∑︁
𝑖=1

𝑥𝑖 (𝑦𝑖 − 𝑥𝑖𝛽)) = 0

−1
𝑛
𝛽 + 1

𝑛

𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖 − 𝛽
1
𝑛

𝑛∑︁
𝑖=1

𝑥𝑖𝑥𝑖 = 0

1
𝑛
𝛽 + 𝛽 1

𝑛

𝑛∑︁
𝑖=1

𝑥𝑖𝑥𝑖 =
1
𝑛

𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖

𝛽 ( 1
𝑛
+ 1
𝑛

𝑛∑︁
𝑖=1

𝑥𝑖𝑥𝑖) =
1
𝑛

𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖

𝛽𝑀𝐴𝑃 = ( 1
𝑛
+ 1
𝑛

𝑛∑︁
𝑖=1

𝑥𝑖𝑥𝑖)−1 1
𝑛

𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖 .

Now consider the asymptotic case (𝑛 → ∞) and using the WLLN,

1
𝑛

𝑝
→ 0

1
𝑛

𝑛∑︁
𝑖=1

𝑥𝑖𝑥𝑖
𝑝
→ 𝐸 [𝑋𝑋 ]

1
𝑛

𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖
𝑝
→ 𝐸 [𝑋𝑌 ]

Assuming that (0 + 𝐸 [𝑋𝑋 ]) = 𝐸 [𝑋𝑋 ] < ∞ or is non-singular and using the CMT, then

plim
𝑛→∞

𝛽𝑀𝐴𝑃 = (𝐸 [𝑋𝑋 ])−1𝐸 [𝑋𝑌 ] = 𝛽 = plim
𝑛→∞

𝛽𝑂𝐿𝑆

which the same as our OLS estimate for 𝛽 in the probability limit. We see that the effect of prior is “washed
out by the likelihood” because the term in the FOC from the prior, 1

𝑛
, goes to 0 as 𝑛 → ∞.

Notice that in our setup that 𝛽𝑂𝐿𝑆 = 𝛽𝑀𝐿 . We had also showed this more generally in our example with
the linear model in the conditional likelihood subsection of the maximum likelihood estimation section.
Generally, the Bernstein-von Mises Theorem implies the MAP estimate converges to the MLE estimate as
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2.3 Bootstrap Methods 2 TOPICS

the number of data points go to infinity.

Modern methods in Bayesian Estimation often implement Markov Chain Monte Carlo (MCMC). Since
different combinations of prior distributions and likelihood functions may not be analytically tractable
different MCMC samplers are used to sample from the posterior of interest.

Lastly, different models can have computational advantages from using a Frequentist or Bayesian Ap-
proach. For example, in discrete choice, the Logit model is computationally easy to estimate with a ML
Estimator, but has a posterior distribution that is difficult to sample from. In comparison, the Probit model
is easy to sample from but is computationally difficult to estimate with an ML Estimator. As such, applied
researcher may choose the computationally easier approach and then appeal to asymptotics and Bernstein-
von Mises Theorem for an approximate equivalence of the Frequentist and Bayesian Approaches.

2.3 Bootstrap Methods

Bootstrap methods, especially the non-parametric bootstrap, are often used by applied researchers to com-
pute the standard error of a complicated model. These methods fall under a class of resampling techniques,
which also include the jackknife and sub-sampling. Resampling techniques uses the sampling information
from the empirical distribution of the data. The drawbacks of these techniques are they require much more
computational power and often have more difficult theory. Within the bootstrap, many different types of
methods exist and we will focus on the non-parametric bootstrap.

The bootstrap is the distribution acquired by estimation on samples from i.i.d. sampling with re-
placement from the original data set. Suppose that I have a sample of 10 PhD students in the math
camp and wanted to determine the average height of the students. If we index each student from 1 to
10, then each bootstrap sample will be a drawn with replacement of the original 10 PhD students. The
students in the original data set are indexed {1, 2, . . . , 10}, and the first bootstrap sample could be students
{1, 1, 1, 2, 6, 7, 8, 8, 9, 10}. Note that in the first bootstrap sample, student 1 appears three times and student
8 appears twice. Students 3, 4, 5 do not appear at all.

Remark. We can compute the probability that an individual observation appears in the bootstrap sample.

𝑃 (Observation in Bootstrap Sample) = 1 − (1 − 1
𝑛
)𝑛 → 1 − exp(−1) ≈ 0.632

where the limit is taken as 𝑛 → ∞. This means that around 37% of unique observations in the original
data do not appear in the bootstrap sample.

Continuing with our height example, we denote student 𝑖’s height as ℎ𝑖 . Then, the average height in
the original data is ℎ̄ = 1

10
∑10
𝑖=1 ℎ𝑖 and for each bootstrap iteration 𝑏, the average height is ℎ̄𝑏 = 1

10
∑10
𝑖=1 ℎ

𝑏
𝑖

where the 𝑏 superscript denotes the bootstrap sample. ℎ̄𝑏 is just the average height for the students in
bootstrap sample 𝑏. The total number of bootstrap replications is 𝐵 for 𝑏 ∈ {1, . . . , 𝐵}. Often, applied
researchers set 𝐵 to be a large number, say 𝐵 = 100, 1000, or even 10000, and this choice often depends on
the computational resources available to the researcher.

The bootstrap estimator is

ℎ̂𝐵 =
1
𝐵

𝐵∑︁
𝑏=1

ℎ̄𝑏
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2.3 Bootstrap Methods 2 TOPICS

or the average of the bootstrap estimators across the bootstrap iterations. The variance of the estimator is
then

ˆ𝑉𝑎𝑟 (ℎ̂𝐵) =
1

𝐵 − 1

𝐵∑︁
𝑏=1

(ℎ̄𝑏 − ℎ̂𝐵)2

which is the sample variance across bootstrap iterations. The standard error of the estimator is

𝑠𝑒 (ℎ̂𝐵) =
√︃

ˆ𝑉𝑎𝑟 (ℎ̂𝐵) .

Lastly, the normal-approximation bootstrap confidence intervals are

𝐶𝑏𝑜𝑜𝑡 = [ℎ̂𝐵 − 𝑧1−𝛼/2𝑠𝑒 (ℎ̂𝐵), ℎ̂𝐵 + 𝑧1−𝛼/2𝑠𝑒 (ℎ̂𝐵)]

where 𝑧1−𝛼/2 is the 1 − 𝛼/2 quantile of the standard normal distribution.

Remark.
1. The steps for computing the variance and the standard error are similar to the standard compu-

tation procedures for the variance and standard errors but are over bootstrap iterations instead of
observations.

2. The bootstrap confidence interval is also similar to the asymptotic confidence interval but instead
uses the bootstrap standard error instead of the asymptotic standard error. The normal-approximation
here relies on the normal approximation to 𝑡-ratio and can be inaccurate in finite samples. Other
methods, such as the bias-corrected percentile method, can have better estimates.

3. Bootstrap standard errors should be considered as tools to analyze precision than to construct robust
confidence intervals. Since 𝐵 is finite, all the bootstrap statistics are estimates and thus are random.
Further, they will vary across simulations and choices of 𝐵. Thus, different researchers using the
same bootstrap iterations should get slightly different results up to a simulation sampling error.

To generalize our definitions of the bootstrap, we let \ be a vector of the parameters of interest Each
bootstrap draw yields an bootstrap estimate of \ which is denoted as \̂𝑏 . The bootstrap mean is

\̄𝐵 =
1
𝐵

𝐵∑︁
𝑏=1

\̂𝑏 .

The variance of the estimator is

ˆ𝑉𝑎𝑟 (\̄𝐵) =
1

𝐵 − 1

𝐵∑︁
𝑏=1

(\̂𝑏 − \̄𝐵) (\̂𝑏 − \̄𝐵)′.

The standard error of the estimator is

𝑠𝑒 (\̄𝐵) =
√︃

ˆ𝑉𝑎𝑟 (\̄𝐵) .

Lastly, the normal-approximation bootstrap confidence intervals are

𝐶𝑏𝑜𝑜𝑡 = [\̄𝐵 − 𝑧1−𝛼/2𝑠𝑒 (\̄𝐵), \̄𝐵 + 𝑧1−𝛼/2𝑠𝑒 (\̄𝐵)]

24



3 EXAMPLE

where 𝑧1−𝛼/2 is the 1 − 𝛼/2 quantile of the standard normal distribution.

Remark.
1. There are notable examples where bootstrap fails to work. One example is estimating an order

statistic. In our example, consider the performance of the bootstrap when the we want the estimator
to be the maximum height across students.

2. Bootstrap asymptotics are taken over the number of bootstrap iterations, i.e. as 𝐵 → ∞. However,
we would need to be careful since the bootstrap mean has a distribution conditional to the original
data.

3 Example

In the example, we will walk though a derivation of the key properties of an estimator as well as compare
biased and unbiased estimators’ performance in a simulation. This example serves two roles. The first is
to provide an example of a theoretical treatment of deriving the properties of a proposed ML estimator.
The second is to illustrate a Monte Carlo Simulation approach of examining two different estimators’
properties. Please see the RMarkdown Notebook for the example.
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Estimator Example
Booth Math Camp (Autumn 2021)

Walter W. Zhang

July 01, 2021

In this example, we will walk though a derivation of the key properties of an estimator as well as compare
biased and unbiased estimators’ performance in a simulation.1

Contents
MLE Estimator Properties 2

Biased Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Limiting Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Confidence Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Unbiased Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Simulation Study 5
Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Theoretical Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

# Load Packages
require(knitr)
require(kableExtra)
require(data.table)

Consider the following scenario.

Let X1, . . . , Xn be a sequence of i.i.d. sequence of random variables with distribution Unif(θ, 2θ) with θ > 0.

1This example is derived from an Azeem Shaikh exercise.
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MLE Estimator Properties
We first want to show the MLE estimator of θ is

θ̂ = 1
2 max

1≤i≤n
Xi.

For each observation,

pθ(xi) =
{

1
θ if θ ≤ xi ≤ 2θ
0 otherwise

So, the likelihood function is

ln(θ) =
n∏

i=1
pθ(xi) =

n∏

i=1

1
θ
I{θ ≤ xi ≤ 2θ} = 1

θn

n∏

i=1
I{θ ≤ xi ≤ 2θ}

If any xi falls out of the range [θ, 2θ], the indication function is value 0. Thus, we want the smallest θ s.t.
θ̂n ≤ Xi ≤ 2θ̂n,∀i.
Then, for all i, we have that θ ≤ Xi ≤ 2θ, thus maxXi ≤ 2θ. So,

1
2 maxXi ≤ θ

1
2 maxXi ≤ θ ≤ Xi

Thus Xi ≥ 1
2 maxXi, the smallest θ̂n satisfies θ̂n ≤ Xi ≤ 2θ̂n for all i is

θ̂MLE = θ̂n = 1
2 max

1≤i≤n
Xi

Biased Estimator
We now show that the MLE estimator above is biased.

The highest value Xi can take is 2θ. E[max1≤i≤nXi] = 2θ iff P (max1≤i≤nXi = 2θ) = 1

P ( max
1≤i≤n

Xi = 2θ) = 1− P (X1, X2, ..., Xn < 2θ) = 1− P (Xi < 2θ)n

Since P (Xi < 2θ) < 1, we have
E[θ̂n] = 1

2E[ max
1≤i≤n

Xi] < θ

So θ̂n is biased.

Consistency
We now want to show that θ̂n is a consistent estimator to θ.

To show that θ̂n is a consistent estimator, we need to show that as n −→∞

P (|θ̂n − θ| > ε) −→ 0
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Since 2θ̂n − 2θ ≤ 0,

P (|θ̂n − θ| > ε) = P (|2θ̂n − 2θ| > 2ε)
= P (−2θ̂n + 2θ > 2ε)
= P (2θ̂n < 2θ − 2ε)
= P ( max

1≤i≤n
Xi < 2θ − 2ε)

= P (Xi < 2θ − 2ε)n

= (2θ − 2ε− θ
θ

)n

= (1− 2ε
θ

)n

Since 0 < 2ε
θ < 1, we have (1− 2ε

θ )n −→ 0 as n −→∞ So,

P (|θ̂n − θ| > ε) −→ 0

θ̂n is a consistent estimator of θ.

Limiting Distribution
We now derive the limiting distribution for the estimator. We will show that n(θ− θ̂n) converges in distribution
to an exponential distribution parameterized by λ as n→∞. Here λ will be expressed in terms of θ, and the
exponential CDF is

F (x) =
{

0 if x < 0
1− exp(−x/λ) if x ≥ 0

.

We also note that
lim
n→∞

(1− c

n
)n = exp(−c)

for some constant c ∈ R.

Let Xn = n(θ − θ̂n), X ∼ [λ]. We need to show that P (Xn ≤ x) −→ P (X ≤ x)

P (n(θ − θ̂n) ≤ x) = P (θ − θ̂n ≤
x

n
)

= P (θ̂n ≥ θ −
x

n
)

= P (1
2 max

1≤i≤n
Xi ≥ θ −

x

n
)

= 1− P ( max
1≤i≤n

Xi ≤ 2θ − 2x
n

)

= 1− P (Xi ≤ 2θ − 2x
n

)n

= 1− (
2θ − 2x

n − θ
θ

)n

= 1− (1−
2x
θ

n
)n

Since
lim
n−→∞(1− c

n
)n = exp(−c)

We have
P (n(θ − θ̂n) ≤ x) −→ 1− exp(−2x

n
)

Set λ = θ
2 , we have n(θ − θ̂n) converges in distribution to an exponential distribution with λ = θ

2 .
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Confidence Interval
We now want to derive the 95% confidence interval (CI) for the MLE estimator θ̂n.

Define cn to be the 95% quantile of the exponential distribution with λ = θ
2 .

P (n(θ − θ̂n) ≤ c) −→ 0.95

Since
n(θ − θ̂n) d→ exp(θ2)

We have
P (n(θ − θ̂n) ≤ c) = P (θ ≤ θ̂n + c

n
) −→ 0.95

The 95% confidence interval is given by
Cn = [θ̂n, θ̂n + c

n
]

Unbiased Estimator
We now want to suggest an unbiased estimator, θ̃n, for θ.

We know that E[Xi] = 3
2θ from before. Then, we consider

θ̃n = 2
3

1
n

n∑

i=1
Xi

We see the estimator is unbiased since

E[θ̃n] = 2
3n

n∑

i=1
E[Xi] = 2

3n
3
2

n∑

i=1
θ = θ.

Exercise
As an exercise you can show consistency of the unbiased estimator and derive its limiting distribution and
95% CI.
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Simulation Study
We consider a simulation study to compare the biased ML estimator and the unbiased estimator.

Monte Carlo Simulation
The simulation will consider θ ∈ {0.8, 1, 10}, n ∈ {2, 5, 25, 100}, and for m = 104 replications. We fix the seed
before we run the simulation to ensure our results are replicable. Also, we let α = 0.05 for the simulation.
# Define Simulation Parameters
theta_vec <- c(0.8, 1, 10)
n_vec <- c(2, 5, 25, 100)
m <- 1e4L
base_seed <- 1234L

set.seed(base_seed)

Our simulation will take the following steps:

i. Draw n i.i.d. observations from Unif(θ, 2θ)
ii. Compute θ̂n and θ̃n
iii. Compute the MSE: (θ̂n − θ)2 and (θ̃n − θ)2

iv. Compute the MAE: |θ̂n − θ| and |θ̃n − θ|
v. Compute I{|θ̂n − θ| < |θ̃n − θ|}, which is an indicator that is one if the MLE estimator is closer to the

true θ than the unbiased estimator
estimator_simulation <- function(n_value, theta_value)
{

# Step (i)
draws <- runif(n_value, theta_value, 2 * theta_value)

# Step (ii)
theta_tilde <- mean(draws) * 2 / 3
theta_mle <- max(draws) * 1 / 2

# Step (iii)
MSE_tilde <- (theta_tilde - theta_value)ˆ2
MSE_mle <- (theta_mle - theta_value)ˆ2

# Step (iv)
MAE_tilde <- abs(theta_tilde - theta_value)
MAE_mle <- abs(theta_mle - theta_value)

# Step (v)
ind_value <- ifelse(MAE_mle < MAE_tilde, 1L, 0L)

return(data.table(theta = theta_value,
n = n_value,
MSE_tilde = MSE_tilde,
MSE_mle = MSE_mle,
MAE_tilde = MAE_tilde,
MAE_mle = MAE_mle,
ind_value = ind_value))

}
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results_DT <- rbindlist(lapply(n_vec, function(n_value)
{

rbindlist(lapply(theta_vec, function(theta_value)
{

rbindlist(lapply(1:m, function(iteration_value)
{

estimator_simulation(n_value, theta_value)[,Iteration := iteration_value]
}))

}))
}))

summary_DT <- results_DT[, list(`MSE MLE` = mean(MSE_mle),
`MSE Tilde` = mean(MSE_tilde),
`MAE MLE` = mean(MAE_mle),
`MAE Tilde` = mean(MAE_tilde),
`Prob` = mean(ind_value)
), by = c("theta", "n")]

From our simulations, we get the following tables for each θ value. Recall θ̂n is our MLE Estimator and θ̃n is
our unbiased estimator. MSE here implies the mean squared error and MAE implies the mean absolute
deviation/error.

For the table columns, we define:

• MSE MLE ⇐⇒ E[(θ̂n − θ0)2]
• MSE Tilde ⇐⇒ E[(θ̃n − θ0)2]
• MAE MLE ⇐⇒ E[|θ̂n − θ0|]
• MAE Tilde ⇐⇒ E[|θ̃n − θ0|]
• Prob ⇐⇒ P{|θ̂n − θ0| < |θ̃n − θ0|} which is the probability of θ̂n being closer to θ than θ̃n.

# theta = 0.8
kable(summary_DT[theta == 0.8, !c("theta"), with = FALSE],

escape = FALSE, caption = "theta = 0.8", digits = 3) %>%
kable_styling(bootstrap_options = c("striped", "bordered"),

full_width = FALSE,
latex_options = "hold_position")

Table 1: theta = 0.8

n MSE MLE MSE Tilde MAE MLE MAE Tilde Prob
2 0.026 0.011 0.132 0.087 0.283
5 0.008 0.005 0.067 0.056 0.415
25 0.000 0.001 0.015 0.025 0.667
100 0.000 0.000 0.004 0.012 0.804

# theta = 1
kable(summary_DT[theta == 1, !c("theta"), with = FALSE],

escape = FALSE, caption = "theta = 1", digits = 3) %>%
kable_styling(bootstrap_options = c("striped", "bordered"),

full_width = FALSE,
latex_options = "hold_position")

# theta = 10
kable(summary_DT[theta == 10, !c("theta"), with = FALSE],
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Table 2: theta = 1

n MSE MLE MSE Tilde MAE MLE MAE Tilde Prob
2 0.041 0.018 0.166 0.110 0.276
5 0.012 0.008 0.085 0.070 0.416
25 0.001 0.001 0.019 0.031 0.658
100 0.000 0.000 0.005 0.015 0.812

escape = FALSE, caption = "theta = 10", digits = 3) %>%
kable_styling(bootstrap_options = c("striped", "bordered"),

full_width = FALSE,
latex_options = "hold_position")

Table 3: theta = 10

n MSE MLE MSE Tilde MAE MLE MAE Tilde Prob
2 4.210 1.876 1.670 1.120 0.287
5 1.154 0.725 0.821 0.687 0.418
25 0.073 0.148 0.194 0.307 0.652
100 0.005 0.037 0.049 0.154 0.807

From our results, we see that for smaller values of n, we would prefer to use the unbiased estimator and for
larger values of n we would prefer to use the MLE estimator. Note that for a small n value, the biased of the
MLE estimator is very large and the MLE estimator performs worse than the unbiased estimator. However,
for larger n, we see that the MLE estimator has a much smaller MSE and MAE than those for the unbiased
estimator.

Thus, for smaller n, we prefer the unbiased estimator and for large n, we prefer the biased estimator. Further,
unbiasedness may not always be desirable as for large n our MLE estimate is much closer to the true θ value.

Theoretical Justification
We can justify the above results on theoretical grounds. From the CLT, the unbiased estimator has the
property that

√
n(θ̃n − θ0) d→ N(0, θ

2

12)

As in the previous problem, we know the MLE has the property that it is n-consistent

n(θ̂n − θ0) = Op(1)

Note that the unbiased estimator is only
√
n-consistent. Hence, we expect the MLE to converge to θ0 at a

faster rate than the unbiased estimator (or as n→∞ the MLE estimator gets more concentrated around θ0),
but in small samples it may have performance due to the MLE estimator’s large bias.
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Part II

Statistical Inference III - Methods
This section provides an overview of the commonly used econometric methods used in the first year
courses. These concepts should provide background for the third quarter econometrics courses at Booth or
the Economics department. The companion RMarkdown notebook provides an implementation of various
methods for a Heterogeneous Treatment Effects estimation in a simulated RCT.
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4 PANEL DATA METHODS

4 Panel Data Methods

A set of panel data is a set of observations {(𝑋𝑖,𝑡 , 𝑌𝑖,𝑡 )} (𝑖,𝑡 ) ∈𝐼 indexed by both 𝑖 and 𝑡 , where 𝑋𝑖,𝑡 has 𝑘
dimensions. A balanced panel means that there are 𝑁 and 𝑇 such that the index set 𝐼 = {1, . . . , 𝑁 } ×
{1, . . . ,𝑇 }. We will focus on the balanced panel case. For the three following sub-sections, we will consider
the same statistical model:

𝑌𝑖𝑡 = 𝛼𝑖 + 𝑋 ′
𝑖𝑡𝛽 +𝑈𝑖𝑡 ,

which we call the linear fixed effects model.

4.1 Fixed Effects

For each individual 𝑖 , let 𝑧𝑖 be the within-individual average for 𝑧 ∈ {𝑌,𝑋,𝑈 }, i.e. 𝑧𝑖 = 𝑇 −1 ∑𝑇
𝑡=1 𝑧𝑖𝑡 . Let ¤𝑧𝑖𝑡

be the demeaned value, ¤𝑧𝑖𝑡 = 𝑧𝑖𝑡 − 𝑧𝑖 . Then, the linear fixed effects model becomes

¤𝑌𝑖𝑡 = ¤𝑋 ′
𝑖𝑡𝛽 + ¤𝑈𝑖𝑡 .

By pooling data over 𝑖 and 𝑡 and then applying OLS, we propose the fixed-effect estimator

𝛽𝐹𝐸 =

(
1
𝑁𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

¤𝑋𝑖𝑡 ¤𝑋 ′
𝑖𝑡

)−1 (
1
𝑁𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

¤𝑋𝑖𝑡 ¤𝑌𝑖𝑡

)
.

There is a numerically equivalent representation of FE. For each 𝑖 and 𝑡 , let 𝐷𝑖𝑡 be an indicator vector
of 𝑁 dimensions such that 𝐷𝑖𝑡 has one on its 𝑖th entry and zero everywhere else. Let 𝑍𝑖𝑡 = (𝑋 ′

𝑖𝑡 , 𝐷
′
𝑖𝑡 )′

which contains the covariates and the fixed effect 𝐷𝑖𝑡 . Now we regress 𝑌𝑖𝑡 on 𝑍𝑖𝑡 with the pooled data, and
obtain

\̂𝐹𝐸 =

(
1
𝑁𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑍𝑖𝑡𝑍
′
𝑖𝑡

)−1 (
1
𝑁𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑍𝑖𝑡𝑌𝑖𝑡

)
.

The first 𝑘 entries of \̂𝐹𝐸 will be numerically equivalent to 𝛽𝐹𝐸 . For either method, make sure 𝑋 does not
include a constant, otherwise you will have multicollinearity.

The statistical properties of the fixed-effect estimator will vary depending on the the assumptions you
are willing to make.
Case 1: Assume (𝑌𝑖𝑡 , 𝑋𝑖𝑡 ,𝑈𝑖𝑡 ) is i.i.d. for each 𝑖 and 𝑡 , then we can treat \̂𝐹𝐸 as an OLS estimator and derive
standard OLS properties under regularity conditions.
Case 2: Assume (𝑌𝑖𝑡 , 𝑋𝑖𝑡 ,𝑈𝑖𝑡 ) is independent across 𝑖 , but is correlated within 𝑖 . That is, we assume
𝐸 [𝑈𝑖𝑡𝑈 𝑗𝑠] = 0 for 𝑖 ≠ 𝑗 , but we might have 𝐸 [𝑈𝑖𝑡𝑈𝑖𝑠] ≠ 0 for some 𝑡 and 𝑠 . Also, assume 𝑁 → ∞
and𝑇 is fixed. In this case, the standard OLS mean-independence condition 𝐸 [𝑈𝑖𝑡 |𝑋𝑖𝑡 ] = 0 is not sufficient
for consistency. We need some form of “strict exogeneity”. An example is:

[SE]: (strict exogeneity) 𝐸 [𝑈𝑖𝑡 |𝛼𝑖 , 𝑋𝑖1, 𝑋𝑖2, . . . , 𝑋𝑖𝑇 ] = 0 for each 𝑖 and 𝑡 .
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4.1 Fixed Effects 4 PANEL DATA METHODS

Figure 1: Fixed effects v.s. Pooled OLS

The consistency of the fixed-effect estimator can be established by

𝛽𝐹𝐸 =

(
1
𝑁

𝑁∑︁
𝑖=1

(
1
𝑇

𝑇∑︁
𝑡=1

¤𝑋𝑖𝑡 ¤𝑋 ′
𝑖𝑡

))−1 (
1
𝑁

𝑁∑︁
𝑖=1

(
1
𝑇

𝑇∑︁
𝑡=1

¤𝑋𝑖𝑡 ¤𝑌𝑖𝑡

))
= 𝛽 +

(
1
𝑁

𝑁∑︁
𝑖=1

(
1
𝑇

𝑇∑︁
𝑡=1

¤𝑋𝑖𝑡 ¤𝑋 ′
𝑖𝑡

))−1 (
1
𝑁

𝑁∑︁
𝑖=1

(
1
𝑇

𝑇∑︁
𝑡=1

¤𝑋𝑖𝑡 ¤𝑈𝑖𝑡

))
𝑝
→ 𝛽 + 𝐸

[
1
𝑇

𝑇∑︁
𝑡=1

¤𝑋𝑖𝑡 ¤𝑋 ′
𝑖𝑡

]−1

𝐸

[
1
𝑇

𝑇∑︁
𝑡=1

¤𝑋𝑖𝑡 ¤𝑈𝑖𝑡

]
= 𝛽.

To justify the convergence in probability, we need to check conditions of WLLN and invertibility. The last
equality is due to [SE].

We can follow the similar procedure from before to obtain the asymptotic distribution of 𝛽𝐹𝐸 . Note
that there are other popular sets of assumptions in addition to our two cases.

Remark.
1. Figure 1 illustrates the intuition for the fixed effects and pooled OLS estimator. This figure also

demonstrates a version of Simpson’s Paradox.
2. Figure 2 from Strulov-Shlain (2019) demonstrates the same pattern appearing in left digit bias in

consumer demand.
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Figure 2: Left digit bias

4.2 First Differences

Another way to cancel out the individual effect is to take first differences. In other words, let 𝑧𝑖,𝑡 =

𝑧𝑖,𝑡 − 𝑧𝑖,𝑡−1 for 𝑧 ∈ {𝑌,𝑋,𝑈 }. Then the linear fixed effects model is

�̃�𝑖𝑡 = �̃�
′
𝑖𝑡𝛽 + �̃�𝑖𝑡 .

Pooled OLS can be used now to estimate 𝛽 , i.e.

𝛽𝐹𝐷 =

(
1
𝑁𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

�̃�𝑖𝑡�̃�
′
𝑖𝑡

)−1 (
1
𝑁𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

�̃�𝑖𝑡�̃�𝑖𝑡

)
,

where we assume data of 𝑡 = 0 is also available for notational simplicity. Again, different sets of assump-
tions yields different statistical properties.

4.3 Fama-MacBeth Regression

The Fama-MacBeth estimator (FM) is especially popular in accounting and financial research. It can take
various forms, but the idea is to first divide observations into 𝐺 groups, then estimate the parameter in
each subgroup, and take the average of the 𝐺 estimators as the final estimator. A typical FM estimator in
the context of the linear fixed effect model is given as follows:

For each 𝑖 , first run OLS of {𝑌𝑖𝑡 }𝑇𝑡=1 on {𝑋𝑖𝑡 }𝑇𝑡=1 and a constant. Ignore the constant’s estimator and let
the coefficients of 𝑋 be 𝛽𝑖 . Then, the Fama-MacBeth estimator is given by

𝛽𝐹𝑀 =
1
𝑁

𝑁∑︁
𝑖=1

𝛽𝑖 .

The Fama-MacBeth estimator was proposed in 1973 and the theory behind it was established relatively
recently. It is conceptually simple and easy to implement. Surprisingly, it has very nice statistical proper-
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5 TREATMENT EFFECTS OVERVIEW

ties. The intuition behind this is that we can treat each 𝛽𝑖 as being drawn from some distribution. As long
as they are approximately independent, their average will have nice properties.

5 Treatment Effects Overview

5.1 Theory

5.1.1 Neyman-Rubin Causal Model

The Neyman-Rubin Causal Model underlies most of the causal inference research in applied economics.
The other approach is the Judea Pearl’s causal graphs and direct acyclical graphs (DAGs) formulation of
approaching the problem of causal inference. Note that the two approaches are not exclusive and often
researchers can map their problems from one to another. We will focus on the Neyman-Rubin Causal
Model for these set of notes.

Consider the following scenario. We want to determine the causal impact of math camp (or listening
to Karthik’s curated Spotify playlist) on the first year student’s first quarter GPA. The population here is
all of the incoming Booth PhD students in math camp this year. For each individual 𝑖 , the no treatment
case (𝑊𝑖 = 0) case would be that the individual does attend to math camp and the treatment case (𝑊𝑖 = 1)
would be that the individual attends math camp. The outcome of interest is the first quarter students’ GPA.
There are two treatment levels and individuals are assigned to the treatment or no treatment case.

Then, causal effect (or treatment effect) of treatment𝑊𝑖 on individual 𝑖 is the difference in the potential
outcomes or,

𝜏𝑖 = 𝑌𝑖 (𝑊𝑖 = 1) − 𝑌𝑖 (𝑊𝑖 = 0).

This is a model of parallel worlds where the treatment effect, 𝜏𝑖 , is the difference between the two worlds.
In our example, the individual treatment effect would be the difference in GPA if that individual attended
math camp to not attending math camp. Note that we can never know the true treatment effect because
we never observe the other potential outcome. An incoming Booth PhD student either was allowed to go
to math camp or did not go, and we cannot see the other potential outcome for person 𝑖 . This is known as
the fundamental problem of causal inference. Lastly, we can generalize this to many treatment arms
(e.g.𝑊𝑖 ∈ {0, 1, . . . , 𝑘}).

Since we only have the realized outcome (or observed outcome) for each individual 𝑖 ,

𝑌𝑜𝑏𝑠𝑖 =


𝑌𝑖 (𝑊𝑖 = 0) if𝑊𝑖 = 0 (Did not attend math camp)

𝑌𝑖 (𝑊𝑖 = 1) if𝑊𝑖 = 1 (Attended math camp)

which is one of the two potential outcomes, and we can never directly estimate the individual causal effect
or individual treatment effect of

𝑌𝑖 (𝑊𝑖 = 1) − 𝑌𝑖 (𝑊𝑖 = 0) .

Instead of estimating the individual treatment effects, we can estimate the average treatment effect
(ATE) in the population

𝐴𝑇𝐸 = 𝐸 [𝑌𝑖 (𝑊𝑖 = 1) − 𝑌𝑖 (𝑊𝑖 = 0)] .
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5.1 Theory 5 TREATMENT EFFECTS OVERVIEW

In our example, the ATE is the average difference in first quarter students’ GPA (outcome variable) between
those who attended math camp to those who did not attend math camp (across treatment groups). To
estimate the ATE, we can use the potential outcomes framework,

𝜏 = 𝐸 [𝑌𝑖 (𝑊𝑖 = 1) − 𝑌𝑖 (𝑊𝑖 = 0)] = 𝐸 [𝑌𝑜𝑏𝑠𝑖 |𝑊𝑖 = 1] − 𝐸 [𝑌𝑜𝑏𝑠𝑖 |𝑊𝑖 = 0] .

A major concern with the causal estimates are confounds. Confounds are can be observable or unob-
servables that led to certain individuals to select on the treatment. These confounders can lead estimates to
not be the average treatment effect (ATE). For example, PhD students who are better at math may decide to
skip math camp entirely (or select out of the math camp treatment), so the average treatment effect will be
lower than the true average treatment effect. If we observe student’s math ability before math camp, then
we can try to control for the math ability by proposing an instrumental (IV) that captures the effect. Alter-
natively, there could some unobservable characteristics that leads to selection on treatment. Controlling
for these would require a stronger argument on how your model relates to the underlying data-generating
process.

5.1.2 Randomization and Randomized Control Trials (RCT)

One way to try to avoid confounders is introducing randomization to the treatment assignment. Instead
of allowing for self-selection, we can try to impose the treatment arms on the treatment groups. In our
example, we would randomly assign each person in the incoming class to be treated. Then, assuming
compliance to the treatment, we can just estimate 𝐸 [𝑌𝑜𝑏𝑠𝑖 |𝑊𝑖 = 1] − 𝐸 [𝑌𝑜𝑏𝑠𝑖 |𝑊𝑖 = 0], or that the difference
in means of the outcome variable of interest to attain the ATE. If there are multiple treatment arms, we can
generalize the procedure of the differences in the means of the outcome variables of the treatment groups
to the non-treatment group.

However, for randomization to give us an estimate the average treatment effect, we need the following
conditions to hold.

1. Unconfoundedness: The potential outcomes 𝑌1(0) and 𝑌𝑖 (1) are statistically independent of the
treatment𝑊𝑖 ,

(𝑌𝑖 (0), 𝑌1(1)) ⊥𝑊𝑖

2. Overlap: The probability of receiving the treatment is between 0 and 1,

0 < 𝑃𝑟 {𝑊𝑖 = 1} < 1

3. Stable unit treatment value assumption (SUTVA): The treatment assignment for individual 𝑖
does not affect the treatment assignment for individual 𝑘 ≠ 𝑖

Remark.
• Unconfoundedness and overlap are directly under the RCT designer’s control. If the treatment is
randomized correctly for some probability of treatment between 0 and 1, then will be satisfied.

• SUTVA rules out social interactions or economic equilibrium effects.
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Proposition 2. If these three conditions are satisfied, then we have

𝜏 = 𝐸 [𝑌𝑜𝑏𝑠𝑖 |𝑊𝑖 = 1] − 𝐸 [𝑌𝑜𝑏𝑠𝑖 |𝑊𝑖 = 0] = 𝐴𝑇𝐸.

Proof. Let us denote 𝑌𝑖 as the shorthand for 𝑌𝑜𝑏𝑠𝑖 . Then,

𝐸 [𝑌𝑖 (1) − 𝑌𝑖 (0)] = 𝐸 [𝑌𝑖 (1)] − 𝐸 [𝑌𝑖 (0)]
= 𝐸 [𝑌𝑖 (1) |𝑊𝑖 = 1] − 𝐸 [𝑌𝑖 (0) |𝑊𝑖 = 0]
= 𝐸 [𝑌𝑖 |𝑊𝑖 = 1] − 𝐸 [𝑌𝑖 |𝑊𝑖 = 0]

where the first line follows from the the linearity of the expectation operator. The second line follows
from the unconfoundedness assumption. This assumption is key and allows us to see how we can use
randomization to infer the ATE. In our recurrent math camp example, we expect 𝐸 [𝑌𝑖 (0) |𝑊𝑖 = 0] >

𝐸 [𝑌𝑖 (0)] without randomization (and compliance to the treatment), and this occurs from selection bias.
The last line states that a conditional on assignment treatment 𝑤 , the observed outcomes is the same as
the potential outcome 𝑌𝑖 (𝑤) that corresponds to this treatment. □

Remark. To recap the intuition for an RCT, we note that if the RCT with two treatment arms was ran
correctly then:

• Random assignment yields two copies of the same population of individuals
• The only difference between the two populations is the treatment assignment or experimental ma-
nipulation

• Thus, the difference in outcomes between the two outcomes is caused by the treatment
We can check differences in the population of individuals in the treatment arms by examining covariate
balance, which can involve comparing histograms of the pre-treatment variables or more formal statistical
tests (i.e. an unpaired 𝑡-test or a KS-test).

We can also use standard regression analysis to estimate the average treatment effect. Let𝑊𝑖 ∈ {0, 1} be a
dummy variable indicating treatment status. The regression model to estimate the ATE, 𝜏 , is

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + · · · + 𝛽𝐾𝑋𝑖𝐾 + 𝜏𝑊𝑖 + 𝜖𝑖

where 𝑋𝑖1, . . . , 𝑋𝑖𝐾 are the pre-treatment variables or pre-treatment covariates. In our example, these
could be whether an incoming student has a master’s degree or not, whether she has worked as an RA
before or not, etc.

Question 1. Do we need to control for pre-treatment variables 𝑋𝑖1, . . . , 𝑋𝑖𝐾 to estimate the average treatment
effect 𝜏?

Proof. Let𝑊𝑖 be randomly assigned and all covariates𝑋1, . . . , 𝑋𝑖𝐾 be independent. Consider the regression

𝑌𝑖 = 𝛽0 + 𝜏𝑊𝑖 + 𝜖𝑖

where the error term implicitly includes the omitted covariates. Let us define `𝑘 = 𝐸 [𝑋𝑖𝑘 ] and 𝛿 =
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∑𝐾
𝑘=1 𝛽𝑘`𝑘 . Then, we can write the error term as

𝜖𝑖 = 𝛽1𝑋𝑖1 + · · · + 𝛽𝑘𝑋𝑖𝐾 + 𝜖𝑖

= 𝛿 +
𝐾∑︁
𝑘=1

𝛽𝑘 (𝑋𝑖𝑘 − `𝑘 ) + 𝜖𝑖

= 𝛿 + [𝑖 .

From the unconfoundedness assumption, we have that

𝐸 [𝑋𝑖𝑘 − `𝑘 |𝑊𝑖] = 𝐸 [𝑋𝑖𝑘 |𝑊𝑖] − `𝑘 = 𝐸 [𝑋𝑖𝑘 ] − `𝑘 = 0

so then

𝐸 [[𝑖 |𝑊𝑖] = 𝐸 [
𝐾∑︁
𝑘=1

𝛽𝑘 (𝑋𝑖𝑘 − `𝑘 ) + 𝜖𝑖 |𝑊𝑖]

=

𝐾∑︁
𝑘=1

𝛽𝑘𝐸 [𝑋𝑖𝑘 − `𝑘 |𝑊𝑖] + 𝐸 [𝜖𝑖 |𝑊𝑖]

= 0.

Then, the original regression in the form

𝑌𝑖 = (𝛽0 + 𝛿) + 𝜏𝑊𝑖 + [𝑖

and the intercept will be 𝛽0 + 𝛿 . Since 𝐸 [[𝑖 |𝑊𝑖] = 0 the regression will yield an unbiased estimate of the
ATE. Thus, we do not need to control for 𝑋1, . . . , 𝑋𝑖𝐾 to estimate the ATE. □

Remark.
• In applied research, the observed 𝑋𝑘 ’s are usually included in the regression. Inclusion of the ob-
served covariate will reduce the error’s variance and the estimated coefficients will then be more
precise.

• The regression’s estimate will not yield a causal interpretation unless 𝐸 [𝜖 |𝑋 ] = 0. If the RCT is run
correctly and assuming SUTVA, then 𝐸 [𝜖 |𝑋 ] = 0 should hold.

5.1.3 Observational Studies

We saw that if treatment is randomly assigned, then we can recover an unbiased estimate of the CATE.
But in observational studies, where the researcher is not given the agency to introduce randomization
in population, can we recover the causal estimate? It turns out we can, but we generally need stronger
assumptions.

Consider the binary treatment𝑊𝑖 = {0, 1} scenario. Even when𝑊𝑖 is not fully randomly assigned, it
may be random conditional on the observed pre-treatment variables 𝑋𝑖1, . . . , 𝑋𝑖𝐾 . This leads to the general
unconfoundedness assumption which is weaker than in the RCT case.
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1. Unconfoundedness (general): The potential outcomes𝑌1(0) and𝑌𝑖 (1) are statistically independent
of the treatment𝑊𝑖 conditional on 𝑋𝑖1, . . . , 𝑋𝑖𝐾

{(𝑌𝑖 (0), 𝑌1(1)) ⊥𝑊𝑖}|𝑋𝑖1, . . . , 𝑋𝑖𝐾

In colloquial terms, this means that the treatment𝑊𝑖 is as good as random. If the general version of un-
confoundedness assumption is satisfied, then we can recover the ATE

𝐴𝑇𝐸 = 𝐸 [𝑌𝑜𝑏𝑠𝑖 |𝑊𝑖 = 1] − 𝐸 [𝑌𝑜𝑏𝑠𝑖 |𝑊𝑖 = 0] .

Note that in regression formulation for estimating the ATE, we nowmust control for the pre-treatment
covariates 𝑋𝑖1, . . . , 𝑋𝑖𝐾 in order to recover the ATE. The regression function then becomes,

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + · · · + 𝛽𝑘𝑋𝑖𝐾 + 𝜏𝑊𝑖 + 𝜖𝑖 .

The regression model can also be extended to multi-level treatments or a continuous treatment variable
𝑊𝑖 .

Revisiting our example for determining the causal impact of math camp, we may believe after control-
ling whether an incoming PhD student has gotten a masters, has been an RA before, her GRE math scores,
and her undergraduate GPA may be enough for general unconfoundedness to hold.

Remark. Making this claim that general unconfoundedness holds will depend on how convincing the story
you tell is. In the above example, if there is some unobservable characteristic that leads to selection bias,
then the unconfoundedness assumption will not hold. While running an RCT gives you unconfoundedness
and overlap “for free”, the convincing story instead needs be on whether the experiment was run correctly
and whether SUTVA hold in your scenario.

5.1.4 Conditional Average Treatment Effect (CATE)

We can extend the average treatment effects framework to get the conditional average treatment effect
(CATE), which is just the average treatment effect conditional on the some covariates. In our example, we
may want to estimate the average treatment effect of math camp for students who have done a master’s
program before. Then, the estimate of interest is the conditional average treatment effect where we are
conditioning on the whether an individual has completed a master’s program before starting the PhD.

The CATE is represented as

𝐶𝐴𝑇𝐸 (𝑥𝑖) = 𝜏 (𝑥𝑖)
= 𝐸 [𝑌𝑖 (𝑊𝑖 = 1) − 𝑌𝑖 (𝑊𝑖 = 0) |𝑋𝑖 = 𝑥𝑖]
= 𝐸 [𝑌𝑖 (𝑊𝑖 = 1) |𝑋𝑖 = 𝑥𝑖] − 𝐸 [𝑌𝑖 (𝑊𝑖 = 0) |𝑋𝑖 = 𝑥𝑖] .

The CATE can be different across customers with varying characteristics and thus is a heterogeneous
treatment effect (HTE). If we assume a linear model for the CATE, then we have the proposed regression
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model

𝑌𝑖 = 𝛽0 +
𝑝∑︁
𝑘=1

𝛽𝑘𝑥𝑖𝑘 + 𝛿0𝑊𝑖 +
𝑝∑︁
𝑘=1

𝛿𝑘 (𝑥𝑖𝑘𝑊𝑖) + 𝜖𝑖

and the interaction terms are 𝑥𝑖𝑘𝑊𝑖 . The regression model will let us estimate the conditional expectation
function

𝐸 [𝑌𝑖 |𝒙𝑖 ,𝑊𝑖] = 𝛽0 +
𝑝∑︁
𝑘=1

𝛽𝑘𝑥𝑖𝑘 + 𝛿0𝑊𝑖 +
𝑝∑︁
𝑘=1

𝛿𝑘 (𝑥𝑖𝑘𝑊𝑖)

Our goal is to estimate the CATE,

𝜏𝑖 = 𝐸 [𝑌𝑖 (𝑊𝑖 = 1) − 𝑌𝑖 (𝑊𝑖 = 0) |𝒙𝑖]
= 𝐸 [𝑌𝑖 |𝒙𝑖 ,𝑊𝑖 = 1] − 𝐸 [𝑌𝑖 |𝒙𝑖 ,𝑊𝑖 = 0] .

We can use the regression function to predict the CATE,

𝜏𝑖 = 𝐸 [𝑌𝑖 |𝒙𝑖 ,𝑊𝑖 = 1] − 𝐸 [𝑌𝑖 |𝒙𝑖 ,𝑊𝑖 = 0]

=

(
𝛽0 +

𝑝∑︁
𝑘=1

𝛽𝑘𝑥𝑖𝑘 + 𝛿0 +
𝑝∑︁
𝑘=1

𝛿𝑘𝑥𝑖𝑘 )
)
−

(
𝛽0 +

𝑝∑︁
𝑘=1

𝛽𝑘𝑥𝑖𝑘

)
= 𝛿0 +

𝑝∑︁
𝑘=1

𝛿𝑘𝑥𝑖𝑘

and we will attain consistent estimates of the parameters 𝛿𝑘 when the three assumptions from before are
satisfied (unconfoundedness, overlap, and SUTVA).

Remark. To attain the ATE from the CATE, you integrate out the 𝒙𝑖 . In other words, you evaluate the
CATE with 𝒙𝑖 = �̄�𝑖 to recover the ATE. This also means that in the last line of the above equation, 𝛿0 is
not the ATE.

5.2 An Applied Toolbox

Instrumental variables (IV), RCTs, DiD, RDD, and matching are commonly used tools by applied econome-
tricians. However, all these methods all depend on the assumptions underpinning the models. Ultimately,
to make a convincing argument that your method captures the causal effect, one needs to tell a credible
story about how the model fits the underlying data-generating process (DGP). If one’s audience is not
convinced by the story, then nomatter what econometric technique is presented, the causal estimate would
be viewed in suspect.

Even for the “gold standard” of methods, the RCT, a story needs to be told to justify the RCT was
run correctly. Otherwise, there could be selection on unobservables or confounders that plague the RCT
estimates. Thus, regardless of the econometric method, a credible story of the relation of how the technique
relates to the DGP is required.

A separate question is the external validity of the estimates. The question asks whether the estimates
generalize to a larger population or only adequately describe the people in one’s data sample. Ultimately, for
a normative economics perspective, externality validity is required for decisionmaking, such as for policy
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or business decisions. If the researcher is focused on a positive economics perspective, then treatment
effect on the estimated population is itself interesting enough.

Other than IV and RCTs, commonly used techniques by applied econometricians are matching estima-
tors, differences-in-differences, and regression discontinuity designs. We will cover the latter three in this
section.

5.2.1 Matching

In essence, the matching estimator examines people in a treatment group and finds the closest person or
people in the other treatment group. Then, taking the differences in the outcome variables will yield the
treatment effect. When one person is matched tomany in another treatment group, there can bematching
with replacement ormatching without replacement. If a model of the propensity score (a model of
the probability of being treated conditional on observed covariates) exists, then matching can be also done
on the propensity score estimates. Matching tries to approximate the individual level treatment effect by
finding someone in the other group that is similar to the person of interest.

Consider the case with binary treatment𝑊𝑖 ∈ {0, 1}. We first denote that person 𝑖 matches with𝑀𝑖 to
be the matched people in the other treatment arm. Often 𝑀𝑖 is chosen by the researcher and the number
of people matched with is constant across 𝑖 . Then the matching estimator the other potential outcomes
for individual 𝑖 by constructed by averaging the realized outcomes across𝑀𝑖

𝜏𝑖 =


𝑌𝑜𝑏𝑠𝑖 − 1

|𝑀𝑖 |
∑
𝑙∈𝑀𝑖

𝑌𝑜𝑏𝑠
𝑙

if𝑊𝑖 = 1
1

|𝑀𝑖 |
∑
𝑙∈𝑀𝑖

𝑌𝑜𝑏𝑠
𝑙

− 𝑌𝑜𝑏𝑠𝑖 if𝑊𝑖 = 0
.

To find 𝑚 ∈ 𝑀𝑖 for each individual 𝑖 , researchers often choose the individuals in the other treatment
arm that have similar 𝑋𝑚1, . . . , 𝑋𝑚𝐾 to that individual 𝑖 . Alternatively if a propensity score model, or
𝑃𝑟 (𝑊𝑖 = 1|𝑋 ), has been estimated, then the researchermay choose the𝑚 ∈ 𝑀𝑖 who have similar propensity
scores to individual 𝑖 .

Matching with replacement means that one person can be matched to many people. When |𝑀𝑖 | > 1
this will be the case by construction. Matching without replacement means that each person can only be
matched a unique person in the other treatment arm. In this case, the order of the matching assignment
will play a factor.

Exercise 7. In the matching with replacement scenario, when |𝑀𝑖 | gets very large will the treatment effect
estimates have high variance or high bias? How would you choose the size of |𝑀𝑖 |?

Remark.

• Matching with covariates is often considered a “pure” method in that it does not require knowledge
of the outcome variable to form matches. Thus, matches can be formed before the experiment is run
if the characteristics of the participants are a priori known.

• Applied econometricians do not like matching outside of RCT settings due to possible selection on
unobservables.
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5.2.2 Differences-in-Differences (DiD)

Differences-in-differences (DiD) uses panel data and two groups to estimate the causal effect. Consider
control group 𝐶 and treatment group 𝑇 as well as pre-treatment time period 0 and post-treatment time
period 1. To give an example, let’s modify our math camp example such that before math camp there is a
math ability test and another one after math camp ends. Then the two groups would be the people who
attended or did not attended math camp, the outcome of interest is the math ability test score, and the time
periods would be before and after math camp. The goal is to estimate the causal effect of the treatment of
math camp on the math ability test scores.

The DiD causal effect estimator is then

𝛽𝐷𝑖𝐷 = (𝑦𝑇 1 − 𝑦𝑇 0) − (𝑦𝐶1 − 𝑦𝐶0)

where 𝑦𝑔,𝑡 is the sample average in the outcome variable for group 𝑔 at time period 𝑡 . Taking expected
values, we attain

𝐸 [𝛽𝐷𝑖𝐷 ] = (𝐸 [𝑦𝑇 1] − 𝐸 [𝑦𝑇 0]) − (𝐸 [𝑦𝐶1] − 𝐸 [𝑦𝐶0])
= (𝛽𝑇𝐸 + 𝛿𝑇 1 + 𝛼𝑇 − 𝛼𝑇 ) − (𝛿𝐶1 + 𝛼𝐶 − 𝛼𝐶 )
= 𝛽𝑇𝐸 + (𝛿𝑇 1 − 𝛿𝐶1)

where 𝛽𝑇𝐸 is the treatment effect, 𝛼𝑇 , 𝛼𝐶 are the baseline averages in groups 𝑇 and 𝐶 , and 𝛿𝐶1, 𝛿𝑇 1 are the
change in the average outcomes for group 𝐶 and 𝑇 from time 0 to time 1 respectively.

If we consider a common trends assumption, 𝛿𝐶1 = 𝛿𝑇 1, which says the time trends in both groups
are the same in absence of treatment, then

𝐸 [𝛽𝐷𝑖𝐷 ] = 𝛽𝑇𝐸

and the DiD estimator is an unbiased estimate the to treatment effect. We can also formulate the DiD in a
regression model,

𝑦𝑖𝑡 = 𝛼 + 𝛼𝑇𝑇𝑖𝑡 + 𝛿𝐷𝑖𝑡 + 𝛽𝑇𝑖𝑡𝐷𝑖𝑡 + 𝜖𝑖𝑡

where 𝑇𝑖𝑡 = 1 if individual 𝑖 is in group 𝑇 (treatment group dummy variable) and 𝐷𝑖𝑡 = 1 if time 𝑡 = 1
(post-treatment dummy).

Remark. The model implies the following:
1. 𝐸 [𝑦𝑖𝑡 |𝑖 ∈ 𝐶, 𝑡 = 0] = 𝛼
2. 𝐸 [𝑦𝑖𝑡 |𝑖 ∈ 𝐶, 𝑡 = 1] = 𝛼 + 𝛿
3. 𝐸 [𝑦𝑖𝑡 |𝑖 ∈ 𝑇, 𝑡 = 0] = 𝛼 + 𝛼𝑇
4. 𝐸 [𝑦𝑖𝑡 |𝑖 ∈ 𝑇, 𝑡 = 1] = 𝛼 + 𝛼𝑇 + 𝛿 + 𝛽

Then, from the four implications, we have that

𝛽 = (𝐸 [𝑦𝑖𝑡 |𝑖 ∈ 𝑇, 𝑡 = 1] − 𝐸 [𝑦𝑖𝑡 |𝑖 ∈ 𝑇, 𝑡 = 0]) − (𝐸 [𝑦𝑖𝑡 |𝑖 ∈ 𝐶, 𝑡 = 1] − 𝐸 [𝑦𝑖𝑡 |𝑖 ∈ 𝐶, 𝑡 = 0]) = 𝛽𝑇𝐸 .

Thus, from the model we have 𝛽𝑂𝐿𝑆 = 𝛽𝐷𝑖𝐷 .
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We can extend the standard DiD model in a few ways. First, we can control for exogenous covariates
𝒙𝑖𝑡 , which assumes common trends after controlling for 𝒙𝑖𝑡 , and yields the regression equation,

𝑦𝑖𝑡 = 𝛼 + 𝛼𝑇𝑇𝑖𝑡 + 𝛿𝐷𝑖𝑡 + 𝛽𝑇𝑖𝑡𝐷𝑖𝑡 + 𝒙′
𝑖𝑡𝛾 + 𝜖𝑖𝑡 .

There can also be 𝑀 total treatment and control groups. The DiD setup assumes that the treatment
effect is homogeneous across groups and common trends are assumed after controlling for 𝒙𝑖𝑡 . This yields
the regression equation,

𝑦𝑖𝑡 =

( 𝑀∑︁
𝑙=1

𝛼 𝑗𝑑𝑖∈𝑙

)
+ 𝛿𝐷𝑖𝑡 + 𝛽𝑇𝑖𝑡𝐷𝑖𝑡 + 𝒙′

𝑖𝑡𝛾 + 𝜖𝑖𝑡

where 𝑑𝑖∈𝑙 is dummy variable that is 1 if individual 𝑖 is in group 𝑙 .
Lastly, we can extend the model so there could be treatment at different time periods (0, 1, . . . ,𝑇 ) for

various cross-section groups (𝑀 total groups) with homogeneous treatment effects across groups and com-
mon trends are controlling for 𝒙𝑖𝑡 . This yields the regression equation,

𝑦𝑖𝑡 =

( 𝑀∑︁
𝑙=1

𝛼 𝑗𝑑𝑖∈𝑙

)
+

( 𝑇∑︁
𝑠=1

𝛿𝑠𝐷𝑖𝑠

)
+ 𝛽𝑇𝑖𝑡 + 𝒙′

𝑖𝑡𝛾 + 𝜖𝑖𝑡

where 𝑑𝑖∈𝑙 is dummy variable that is 1 if individual 𝑖 is in group 𝑙 , 𝐷𝑖𝑠 is a dummy variable that is 1 if
treatment 𝑡 = 𝑠 , and 𝑇𝑖𝑡 is a dummy variable that is 1 is individual 𝑖 is treated at time 𝑡 .

Remark. Note that the last extension to DiD is the same as a fixed-effects panel data model where 𝛼 𝑗 is
the time invariant heterogeneity (or the individual fixed effect) for an individual 𝑗 and 𝛿𝑠 are cross-section
invariant heterogeneity (or the time fixed effect).

5.2.3 Regression Discontinuity Design (RDD)

The regression discontinuity design (RDD) is a quasi-experimental method that recovers a causal effect
from interventions by examining the individuals around the threshold induced by an intervention. Then,
by examining the observations close to the threshold on both sides, the average treatment effect can be
evaluated. RDD can be used on observational data or in scenario where randomization in not feasible. For
example, a threshold altered by a policy change can be used for an RDD design (i.e. a change to a bracket
of the tax law)

The RDD has a non-parametric and a parametric estimation strategy. The parametric RDD imposes
a rigid functional form (usually a polynomial) on the estimation equation. One example can be using fifth
order polynomials,

𝑌 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑐𝑖 + 𝛽3𝑐
2
𝑖 + 𝛽4𝑐

3
𝑖 + 𝛽5𝑐

4
𝑖 + 𝛽6𝑐

5
𝑖 + 𝜖.

where 𝑌 is the outcome variable, 𝑐𝑖 is the treatment variable (or running variable/assignment variable), 𝑐
is the cut-off, and

𝑥𝑖 =


1 if 𝑐𝑖 ≥ 𝑐
0 if 𝑐𝑖 < 𝑐

.

Non-parametric RDD often uses local linear regression for estimation. Local linear regression is used
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because it has low bias and well-known convergence properties. A common estimation equation is

𝑌 = 𝛽0 + 𝜏𝐷 + 𝛽1(𝑋 − 𝑐) + 𝛽2𝐷 (𝑋 − 𝑐) + 𝜖

where 𝑐 is the the treatment cutoff and𝐷 = 1{𝑋 ≥ 𝑐}. For given bandwidthℎ, we have that 𝑐−ℎ ≤ 𝑋 ≤ 𝑐+ℎ
and usually a rectangular kernel is used. Note that different slopes and intercepts are fit on the data before
and after the threshold.

Remark. Non-parametric RDD is one of the few popular applications of non-parametric regression in the
applied literature.

Remark. The assumptions for RDD to produce a valid estimate are the following.
1. All relevant variables, including treatment and outcome variables, are continuous up to where the

treatment and outcome discontinuities occur.
2. If the treatment assignment is as good as random at the threshold of treatment, then those who just

are past the threshold are close to those under the threshold.
3. Treatment being as good as random also implies that individuals near the threshold cannot select

into treatment. In the tax bracket example, individuals near threshold would disallowed from pur-
posefully reducing income to be in the lower tax bracket. If not, this would lead to selection bias.

6 Machine Learning Introduction and Example

See the slides and companion video for a machine learning introduction with the focus on causal estima-
tion. The first half of the slides focus on using machine learning techniques for estimating heterogeneous
treatment effects in an RCT setting. The second half of slides takes a more normative perspective and
examines ways to evaluate different targeting policies as well as how to construct the optimal targeting
policy from an randomized control trial.

In the example, we will examine heterogeneous treatment effects (HTE) estimation using various ma-
chine learning methods for a simulated RCT. In the RCT framework, HTE estimation becomes a prediction
problem – we just need to predict the unobserved potential outcome to estimate the HTE. This fact occurs
because if the RCT was performed correctly, then we would satisfied the unconfoundedness and the over-
lap conditions. If we further that assume SUTVA holds, then we get a pure prediction problem. Please see
the RMarkdown notebook for the example.
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Example: Heterogeneous Treatment Effects
Booth Math Camp (Autumn 2021)

Walter W. Zhang

01 July 2021

This RMarkdown Notebook walks through heterogeneous treatment effects estimation for simulated random-
ized control trial (RCT). The notebook also introduces different machine learning estimators and how to
implement them in R. To run the notebook, you may need to install RTools on Windows or Xcode on a Mac
if you have not done so already.

Contents
Data Simulation 2

Heterogeneous Treatment Effect Estimation 3
Causal Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
OLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
OLS with Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Lasso with Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Two Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Two Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Next Steps 22

# Load packages
require(data.table)
require(ggplot2)
require(grf)
require(gamlr)
require(knitr)
require(parallel)
require(DiagrammeR)
require(ranger)
require(rpart)

# Number of cores to use
ncores <- detectCores() - 1L
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Data Simulation
We simulate a field experiment that includes the following variables:

Outcome:

• spend is observed dollar spending.

Features:

• recency is the customer recency status (in months), ranging from 1 to 18.
• email is a dummy variable that indicates if a customer signed up to company’s email list host.

Randomized Treatment:

• target is the treatment indicator, a dummy variable indicating if a customer was targeted with a
catalog. Note that this assignment is random.

We model the purchase probability, p, as follows:

• Targeted consumers:
– For recency between 1 and 6, p = 0.
– For recency between 7 and 12, p increases in recency and takes the value p = 0.03(recency − 6).
– For recency greater than 12, p = 0.18.

• Not targeted consumers:
– If email is true, then p is 1.25 times the baseline purchase probability.
– If email is false, then p is twice the the baseline purchase probability.

Spending conditional on a purchase is uniformly distributed between 80 and 120 (Mean of 100). - Expected
spending is then 100p.

The treatment effect is non-linear in recency. The treatment effect is larger for customers who are not a
email and have recency 7 or higher.
set.seed(1234L)

n_obs <- 100000 # Training Observations
n_pred <- 100000 # Prediction Observations
n <- n_obs + n_pred

customer_DT <- data.table(target = rbinom(n, 1, 0.5),
recency = sample(1:18, n, replace = TRUE),
email = rbinom(n, 1, 1/3))

# Define the purchase probability p
customer_DT[recency <= 6, p := 0.0]
customer_DT[recency > 6 & recency <= 12, p := 0.03*(recency - 6)]
customer_DT[recency > 12, p := 0.03*6]

customer_DT[email == 1 & target == 1, p := 1.25*p]
customer_DT[email == 0 & target == 1, p := 2*p]

# Simulate spending data
customer_DT[, purchase := runif(n) <= p]
customer_DT[, cond_spend := sample(80:120, n, replace = TRUE)]
customer_DT[, spend := purchase*cond_spend]

training_DT <- customer_DT[1:n_obs]
pred_DT <- customer_DT[(n_obs+1):n]
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Heterogeneous Treatment Effect Estimation
Causal Forest
We estimate the causal forest.
X_mat <- as.matrix(training_DT[, .(recency, email)])
Y_vec <- training_DT$spend
W_vec <- training_DT$target

CF_fit <- causal_forest(X = X_mat,
Y = Y_vec,
W = W_vec,
num.trees = 1000L,
num.threads = ncores,
seed = 5678)

Plot the first tree in the forest.
plot(get_tree(CF_fit, 1))

\begin{center}

recency  <= 7

recency  <= 6

True

email <= 0

False

recency  <= 3
size =  1328

avg_Y = 3.31
avg_W = 0.49

recency  <= 10 recency  <= 17

recency  <= 2 recency  <= 4

email <= 0
size =  1427
avg_Y = 0

avg_W = 0.51
email <= 0 recency  <= 5

recency  <= 1 recency  <= 1

size =  948
avg_Y = 0

avg_W = 0.47

size =  954
avg_Y = 0

avg_W = 0.49

size =  483
avg_Y = 0

avg_W = 0.47

size =  456
avg_Y = 0

avg_W = 0.51

size =  949
avg_Y = 0

avg_W = 0.51

size =  441
avg_Y = 0

avg_W = 0.49
email <= 0 email <= 0

size =  916
avg_Y = 0

avg_W = 0.51

size =  454
avg_Y = 0

avg_W = 0.53

size =  932
avg_Y = 0

avg_W = 0.5

size =  458
avg_Y = 0

avg_W = 0.49

recency  <= 8 recency  <= 12
size =  4578

avg_Y = 16.89
avg_W = 0.5

size =  485
avg_Y = 20.63
avg_W = 0.5

size =  909
avg_Y = 10.3
avg_W = 0.5

recency  <= 9 recency  <= 11 recency  <= 14

size =  970
avg_Y = 16.31
avg_W = 0.53

size =  915
avg_Y = 17.5
avg_W = 0.48

size =  898
avg_Y = 24.88
avg_W = 0.5

size =  866
avg_Y = 28.84
avg_W = 0.49

recency  <= 13 recency  <= 17

size =  951
avg_Y = 26.69
avg_W = 0.51

size =  926
avg_Y = 28.24
avg_W = 0.52

recency  <= 16
size =  932

avg_Y = 26.2
avg_W = 0.5

recency  <= 15
size =  938

avg_Y = 25.77
avg_W = 0.46

size =  944
avg_Y = 28.39
avg_W = 0.53

size =  942
avg_Y = 25.44
avg_W = 0.5

Predict spending in the prediction sample.
pred_DT[, TE_CF := predict(CF_fit, as.matrix(pred_DT[, .(recency, email)]), num.threads = ncores)]

Examine table with the true, observed, and predicted CATE (τ) for all values of email and recency.
summary_DT <- pred_DT[, list(tau = 100*(mean(p[target==1]) - mean(p[target==0])),

tau_obs = mean(spend[target==1]) - mean(spend[target==0]),
tau_pred_CF = mean(TE_CF)),

keyby = .(email, recency)]

# Email == 0
kable(summary_DT[email == 0], digits = 2)
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email recency tau tau_obs tau_pred_CF
0 1 0 0.00 0.46
0 2 0 0.00 0.46
0 3 0 0.00 0.46
0 4 0 0.00 0.46
0 5 0 0.00 0.46
0 6 0 0.00 0.46
0 7 3 3.06 2.31
0 8 6 5.50 5.79
0 9 9 10.12 11.41
0 10 12 12.40 13.77
0 11 15 15.85 15.38
0 12 18 16.04 16.06
0 13 18 21.68 17.53
0 14 18 18.20 18.14
0 15 18 18.25 17.62
0 16 18 18.15 17.24
0 17 18 17.93 15.75
0 18 18 15.96 16.93

# Email == 1
kable(summary_DT[email == 1], digits = 2)

email recency tau tau_obs tau_pred_CF
1 1 0.00 0.00 0.16
1 2 0.00 0.00 0.16
1 3 0.00 0.00 0.16
1 4 0.00 0.00 0.16
1 5 0.00 0.00 0.16
1 6 0.00 0.00 0.16
1 7 0.75 0.24 0.48
1 8 1.50 -0.66 2.04
1 9 2.25 0.15 2.52
1 10 3.00 1.81 3.26
1 11 3.75 1.71 2.91
1 12 4.50 4.27 2.71
1 13 4.50 3.86 3.65
1 14 4.50 2.13 5.15
1 15 4.50 2.99 4.08
1 16 4.50 3.74 4.42
1 17 4.50 1.18 2.85
1 18 4.50 1.32 4.95

Plot the true and predicted CATE (τ) for all values of email and recency.
graph_DT <- copy(summary_DT)
graph_DT[, email_flag := ifelse(email == 1, "Email", "No Email")]
graph_DT[, email_flag := factor(email_flag, c("No Email", "Email"))]

ggplot(graph_DT, aes(x = recency, y = tau)) +
geom_line(color = "lightsteelblue", size = 0.5) +
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geom_point(color = "gray30", fill = "lightsteelblue", size = 1.5) +
geom_line(aes(x = recency, y = tau_pred_CF),

color = "hotpink4", size = 0.5) +
geom_point(aes(x = recency, y = tau_pred_CF),

color = "gray30", fill = "hotpink4", size = 1.5) +
ylab("CATE") + xlab("Recency") +
facet_wrap(~ email_flag, nrow = 2, scales = "free_y") +
theme_bw() +
theme(strip.background = element_rect(colour = "gray40", fill = "aliceblue"))
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OLS

OLS_DT <- training_DT[, .(spend, recency, email, target)]

fit_OLS <- lm(spend ~ . + .*target + email:recency*target,
data = OLS_DT)

pred_DT[, spend_OLS := predict(fit_OLS, pred_DT)]

summary_OLS_DT <- pred_DT[, .(tau_pred_OLS = mean(spend_OLS[target==1])
- mean(spend_OLS[target==0])),

keyby = .(email, recency)]
summary_OLS_DT <- merge(summary_OLS_DT, summary_DT[, .(email, recency, tau)],

by = c("email", "recency"))

# Email == 0
kable(summary_OLS_DT[email == 0], digits = 2)

email recency tau_pred_OLS tau
0 1 -2.50 0
0 2 -1.09 0
0 3 0.32 0
0 4 1.73 0
0 5 3.14 0
0 6 4.55 0
0 7 5.96 3
0 8 7.36 6
0 9 8.77 9
0 10 10.18 12
0 11 11.59 15
0 12 13.00 18
0 13 14.41 18
0 14 15.82 18
0 15 17.22 18
0 16 18.63 18
0 17 20.04 18
0 18 21.45 18

# Email == 1
kable(summary_OLS_DT[email == 1], digits = 2)

email recency tau_pred_OLS tau
1 1 -0.87 0.00
1 2 -0.51 0.00
1 3 -0.16 0.00
1 4 0.20 0.00
1 5 0.56 0.00
1 6 0.92 0.00
1 7 1.27 0.75
1 8 1.63 1.50
1 9 1.99 2.25
1 10 2.35 3.00
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email recency tau_pred_OLS tau
1 11 2.70 3.75
1 12 3.06 4.50
1 13 3.42 4.50
1 14 3.78 4.50
1 15 4.14 4.50
1 16 4.49 4.50
1 17 4.85 4.50
1 18 5.21 4.50

graph_DT <- copy(summary_OLS_DT)
graph_DT[, email_flag := ifelse(email == 1, "Email", "No Email")]
graph_DT[, email_flag := factor(email_flag, c("No Email", "Email"))]

ggplot(graph_DT, aes(x = recency, y = tau)) +
geom_line(color = "lightsteelblue", size = 0.5) +
geom_point(color = "gray30", fill = "lightsteelblue", size = 1.5) +
geom_line(aes(x = recency, y = tau_pred_OLS),

color = "hotpink4", size = 0.5) +
geom_point(aes(x = recency, y = tau_pred_OLS),

color = "gray30", fill = "hotpink4", size = 1.5) +
ylab("CATE") + xlab("Recency") +
facet_wrap(~ email_flag, nrow = 2, scales = "free_y") +
theme_bw() +
theme(strip.background = element_rect(colour = "gray40", fill = "aliceblue"))
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summary(fit_OLS)

Call:
lm(formula = spend ~ . + . * target + email:recency * target,

data = OLS_DT)

Residuals:
Min 1Q Median 3Q Max

-43.135 -17.380 -7.339 -0.028 114.096

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.13787 0.36284 -11.404 < 0.0000000000000002 ***
recency 1.43455 0.03370 42.573 < 0.0000000000000002 ***
email -0.02472 0.63135 -0.039 0.96877
target -3.90365 0.51357 -7.601 0.0000000000000296 ***
recency:target 1.40856 0.04751 29.650 < 0.0000000000000002 ***
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email:target 2.67532 0.89245 2.998 0.00272 **
recency:email 0.01406 0.05829 0.241 0.80934
recency:email:target -1.05100 0.08244 -12.748 < 0.0000000000000002 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 31.92 on 99992 degrees of freedom
Multiple R-squared: 0.1167, Adjusted R-squared: 0.1166
F-statistic: 1887 on 7 and 99992 DF, p-value: < 0.00000000000000022
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OLS with Polynomials

OLS_DT <- training_DT[, .(spend, recency, email, target)]

fit_OLS <- lm(spend ~ target*email + poly(recency,3)*email + poly(recency,3):target*email,
data = OLS_DT)

pred_DT[, pred_spend_OLS_poly := predict(fit_OLS, pred_DT)]

summary_OLS_DT <- pred_DT[, .(tau_pred_OLS = mean(pred_spend_OLS_poly[target==1])
- mean(pred_spend_OLS_poly[target==0])),

keyby = .(email, recency)]
summary_OLS_DT <- merge(summary_OLS_DT, summary_DT[, .(email, recency, tau)],

by = c("email", "recency"))

graph_DT <- copy(summary_OLS_DT)
graph_DT[, email_flag := ifelse(email == 1, "Email", "No Email")]
graph_DT[, email_flag := factor(email_flag, c("No Email", "Email"))]

ggplot(graph_DT, aes(x = recency, y = tau)) +
geom_line(color = "lightsteelblue", size = 0.5) +
geom_point(color = "gray30", fill = "lightsteelblue", size = 1.5) +
geom_line(aes(x = recency, y = tau_pred_OLS),

color = "hotpink4", size = 0.5) +
geom_point(aes(x = recency, y = tau_pred_OLS),

color = "gray30", fill = "hotpink4", size = 1.5) +
ylab("CATE") + xlab("Recency") +
facet_wrap(~ email_flag, nrow = 2, scales = "free_y") +
theme_bw() +
theme(strip.background = element_rect(colour = "gray40", fill = "aliceblue"))
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summary(fit_OLS)

Call:
lm(formula = spend ~ target * email + poly(recency, 3) * email +

poly(recency, 3):target * email, data = OLS_DT)

Residuals:
Min 1Q Median 3Q Max

-38.970 -18.297 -4.989 0.672 115.868

Coefficients:
Estimate Std. Error t value

(Intercept) 9.4592 0.1738 54.413
target 9.4716 0.2456 38.570
email 0.1350 0.3011 0.448
poly(recency, 3)1 2355.3579 55.0554 42.782
poly(recency, 3)2 -172.1075 54.9950 -3.130
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poly(recency, 3)3 -727.5815 54.9744 -13.235
target:email -7.3071 0.4257 -17.165
email:poly(recency, 3)1 35.0505 95.2393 0.368
email:poly(recency, 3)2 6.1174 94.9908 0.064
email:poly(recency, 3)3 -18.8939 95.1966 -0.198
target:poly(recency, 3)1 2321.2524 77.6171 29.906
target:poly(recency, 3)2 -268.5050 77.6918 -3.456
target:poly(recency, 3)3 -829.9534 77.6244 -10.692
target:email:poly(recency, 3)1 -1747.2688 134.6962 -12.972
target:email:poly(recency, 3)2 293.0562 134.5754 2.178
target:email:poly(recency, 3)3 706.4091 134.6818 5.245

Pr(>|t|)
(Intercept) < 0.0000000000000002 ***
target < 0.0000000000000002 ***
email 0.654012
poly(recency, 3)1 < 0.0000000000000002 ***
poly(recency, 3)2 0.001751 **
poly(recency, 3)3 < 0.0000000000000002 ***
target:email < 0.0000000000000002 ***
email:poly(recency, 3)1 0.712855
email:poly(recency, 3)2 0.948652
email:poly(recency, 3)3 0.842676
target:poly(recency, 3)1 < 0.0000000000000002 ***
target:poly(recency, 3)2 0.000548 ***
target:poly(recency, 3)3 < 0.0000000000000002 ***
target:email:poly(recency, 3)1 < 0.0000000000000002 ***
target:email:poly(recency, 3)2 0.029435 *
target:email:poly(recency, 3)3 0.000000157 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 31.71 on 99984 degrees of freedom
Multiple R-squared: 0.1279, Adjusted R-squared: 0.1277
F-statistic: 977.2 on 15 and 99984 DF, p-value: < 0.00000000000000022
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Lasso with Polynomials

LASSO_DT <- training_DT[, .(spend, recency, email, target)]

# No intercept here
X_mat <- model.matrix(~ 0 + target*email + poly(recency,3)*email + poly(recency,3):target*email, data = LASSO_DT)
Y_vec <- training_DT$spend

set.seed(12345)
fit_LASSO <- cv.gamlr(x = X_mat,

y = Y_vec,
nfold = 10L)

X_mat_pred <- model.matrix(~ 0 + target*email + poly(recency,3)*email + poly(recency,3):target*email, data = pred_DT)

pred_DT[, pred_spend_Lasso := predict(fit_LASSO, X_mat_pred, select="min")[,1]]

summary_LASSO_DT <- pred_DT[, .(tau_pred_LASSO = mean(pred_spend_Lasso[target==1])
- mean(pred_spend_Lasso[target==0])),

keyby = .(email, recency)]
summary_LASSO_DT <- merge(summary_LASSO_DT, summary_DT[, .(email, recency, tau)],

by = c("email", "recency"))

graph_DT <- copy(summary_LASSO_DT)
graph_DT[, email_flag := ifelse(email == 1, "Email", "No Email")]
graph_DT[, email_flag := factor(email_flag, c("No Email", "Email"))]

ggplot(graph_DT, aes(x = recency, y = tau)) +
geom_line(color = "lightsteelblue", size = 0.5) +
geom_point(color = "gray30", fill = "lightsteelblue", size = 1.5) +
geom_line(aes(x = recency, y = tau_pred_LASSO),

color = "hotpink4", size = 0.5) +
geom_point(aes(x = recency, y = tau_pred_LASSO),

color = "gray30", fill = "hotpink4", size = 1.5) +
ylab("CATE") + xlab("Recency") +
facet_wrap(~ email_flag, nrow = 2, scales = "free_y") +
theme_bw() +
theme(strip.background = element_rect(colour = "gray40", fill = "aliceblue"))
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coef(fit_LASSO, select = "min")

16 x 1 sparse Matrix of class "dgCMatrix"
seg100

intercept 9.610541
target 9.048303
email .
poly(recency, 3)1 2350.132873
poly(recency, 3)2 -152.593385
poly(recency, 3)3 -716.236884
target:email -6.669777
email:poly(recency, 3)1 .
email:poly(recency, 3)2 .
email:poly(recency, 3)3 .
target:poly(recency, 3)1 2215.650063
target:poly(recency, 3)2 -176.311541
target:poly(recency, 3)3 -730.868992
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target:email:poly(recency, 3)1 -1521.641996
target:email:poly(recency, 3)2 107.705104
target:email:poly(recency, 3)3 497.253281

Lasso coefficients look similar to those of the OLS with polynomials.We can also look at the cross-validation
out-of-sample error and its regularization path.
par(mfrow=c(1,2))
# Lasso CV Error
plot(fit_LASSO)
# Lasso regularization path for selected
plot(fit_LASSO$gamlr)
par(mfrow=c(1,1))

−2 −1 0 1 2

10
00

10
50

11
00

11
50

log lambda

m
ea

n 
sq

ua
re

d 
er

ro
r

12 12 8 5 1

−2 −1 0 1 2

−
10

00
0

10
00

20
00

log lambda

co
ef

fic
ie

nt

12 12 8 5 1

61



Two Trees

set.seed(12345)
fit_CART_0 <- rpart(spend ~ recency + email,

data = training_DT[target == 0],
method = "anova", # Regression tree
control = rpart.control(cp = 0, minsplit = 10))

fit_CART_1 <- rpart(spend ~ recency + email,
data = training_DT[target == 1],
method = "anova", # Regression tree
control = rpart.control(cp = 0, minsplit = 10))

We can examine the two regression trees.
# Not targeted
plot(fit_CART_0)
text(fit_CART_0, use.n=TRUE, all=TRUE, cex=.8)

|
recency< 9.5

recency< 7.5

recency< 6.5
email< 0.5

recency< 8.5
email>=0.5email< 0.5

recency< 10.5
email>=0.5 recency< 11.5

email>=0.5 recency>=12.5
recency< 16.5

recency< 14.5
recency< 13.5

email< 0.5email>=0.5
email< 0.5

recency>=15.5recency< 15.5

recency>=17.5
email>=0.5email< 0.5

email< 0.5

9.481
n=49925

2.074
n=25147

0.4758
n=194980

n=16762
3.391

n=2736
3.274

n=1846
3.634
n=890

7.59
n=56496.36

n=2803
6.161
n=927

6.458
n=1876

8.803
n=2846
8.565

n=1864
9.254
n=982

17
n=2477811.13

n=2718
10.78
n=899

11.3
n=1819

17.72
n=2206016.06

n=2804
15.76
n=902

16.21
n=1902

17.96
n=1925617.83

n=1658817.65
n=1104317.48

n=555817.39
n=2878
17.01

n=1895
18.12
n=983

17.59
n=2680
16.85
n=881

17.94
n=1799

17.81
n=548517.6

n=3679
17.09

n=1826
18.1

n=1853
18.24

n=1806
17.27
n=899

19.19
n=907

18.2
n=554517.51

n=2790
17.02
n=980

17.78
n=1810

18.9
n=2755
18.56

n=1806
19.55
n=949

18.78
n=2668
18.52

n=1741
19.26
n=927

62



# Prune the tree (not targeted)
bestcp_0 <- fit_CART_0$cptable[which.min(fit_CART_0$cptable[,"xerror"]),"CP"]
fit_CART_0 <- prune(fit_CART_0, cp = bestcp_0)
plot(fit_CART_0)
text(fit_CART_0, use.n=TRUE, all=TRUE, cex=.8)

|
recency< 9.5

recency< 7.5

recency< 6.5 recency< 8.5

recency< 10.5

recency< 11.5

9.481
n=49925

2.074
n=25147

0.4758
n=19498

0
n=16762

3.391
n=2736

7.59
n=5649

6.36
n=2803

8.803
n=2846

17
n=24778

11.13
n=2718

17.72
n=22060

16.06
n=2804

17.96
n=19256

# Targeted
## Prune the tree (targeted)
bestcp_1 <- fit_CART_1$cptable[which.min(fit_CART_1$cptable[,"xerror"]),"CP"]
fit_CART_1 <- prune(fit_CART_1, cp = bestcp_1)
plot(fit_CART_1)
text(fit_CART_1, use.n=TRUE, all=TRUE, cex=.8)
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|
recency< 8.5

recency< 6.5
recency< 7.5

email>=0.5email>=0.5
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n=927

12.28
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14.33
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n=642121.46
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n=909
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n=955
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32.44
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19.18
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24.64

n=1766
35.03

n=1497431.44
n=1863

35.54
n=1311134.61

n=566934.23
n=3756
33.38
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n=1913
35.35

n=1913
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n=744235.23

n=3700
34.77

n=1827
35.69

n=1873
37.25

n=3742
36.79

n=1887
37.71

n=1855

# Create counterfactual data sets
X_pred_DT_0 <- copy(pred_DT[, .(recency, email)])
X_pred_DT_0[, target:= 0]

X_pred_DT_1 <- copy(pred_DT[, .(recency, email)])
X_pred_DT_1[, target:= 1]

pred_DT[, TE_CART_TT := predict(fit_CART_1, X_pred_DT_1) -
predict(fit_CART_0, X_pred_DT_0)]

summary_TT_DT <- pred_DT[, list(tau_pred_CART_TT = mean(TE_CART_TT)),
keyby = .(email, recency)]

summary_TT_DT <- merge(summary_TT_DT, summary_DT[, .(email, recency, tau)],
by = c("email", "recency"))

graph_DT <- copy(summary_TT_DT)
graph_DT[, email_flag := ifelse(email == 1, "Email", "No Email")]
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graph_DT[, email_flag := factor(email_flag, c("No Email", "Email"))]

ggplot(graph_DT, aes(x = recency, y = tau)) +
geom_line(color = "lightsteelblue", size = 0.5) +
geom_point(color = "gray30", fill = "lightsteelblue", size = 1.5) +
geom_line(aes(x = recency, y = tau_pred_CART_TT),

color = "hotpink4", size = 0.5) +
geom_point(aes(x = recency, y = tau_pred_CART_TT),

color = "gray30", fill = "hotpink4", size = 1.5) +
ylab("CATE") + xlab("Recency") +
facet_wrap(~ email_flag, nrow = 2, scales = "free_y") +
theme_bw() +
theme(strip.background = element_rect(colour = "gray40", fill = "aliceblue"))
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Two Forests
Recall that we train a random forest on the treated data and another on the untreated data. The intuition
here is that if we trained one forest on the whole feature set including the treatment variable, we force the
tree to first split on the treatment variable.
fit_RF_0 <- ranger(spend ~ recency + email,

data = training_DT[target == 0],
num.trees = 1000,
num.threads = ncores,
seed = 12345L)

fit_RF_1 <- ranger(spend ~ recency + email,
data = training_DT[target == 1],
num.trees = 1000,
num.threads = ncores,
seed = 12345L)

# Create counterfactual data sets
X_pred_DT_0 <- copy(pred_DT[, .(recency, email)])
X_pred_DT_0[, target:= 0]

X_pred_DT_1 <- copy(pred_DT[, .(recency, email)])
X_pred_DT_1[, target:= 1]

pred_DT[, TE_RF_TF := predict(fit_RF_1, X_pred_DT_1, num.threads = ncores)$predictions -
predict(fit_RF_0, X_pred_DT_0, num.threads = ncores)$predictions]

summary_TF_DT <- pred_DT[, list(tau_pred_RF_TF = mean(TE_RF_TF)),
keyby = .(email, recency)]

summary_TF_DT <- merge(summary_TF_DT, summary_DT[, .(email, recency, tau)],
by = c("email", "recency"))

graph_DT <- copy(summary_TF_DT)
graph_DT[, email_flag := ifelse(email == 1, "Email", "No Email")]
graph_DT[, email_flag := factor(email_flag, c("No Email", "Email"))]

ggplot(graph_DT, aes(x = recency, y = tau)) +
geom_line(color = "lightsteelblue", size = 0.5) +
geom_point(color = "gray30", fill = "lightsteelblue", size = 1.5) +
geom_line(aes(x = recency, y = tau_pred_RF_TF),

color = "hotpink4", size = 0.5) +
geom_point(aes(x = recency, y = tau_pred_RF_TF),

color = "gray30", fill = "hotpink4", size = 1.5) +
ylab("CATE") + xlab("Recency") +
facet_wrap(~ email_flag, nrow = 2, scales = "free_y") +
theme_bw() +
theme(strip.background = element_rect(colour = "gray40", fill = "aliceblue"))
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Next Steps
Exercise: Try playing around with the non-linear treatment effect part of the simulation. Can you construct
a scenario where the OLS outperforms the Causal Forest in the validation set? What do the treatment effects
need to look like for that to occur?
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Part III

Optimization Theory
This section provides an overview of the commonly used optimizationmethods. These concepts should

provide background for the first year operation courses, courses at the statistics department, and the third
quarter price theory course at the Economics department. The companion RMarkdown notebook provides
a testbed of different optimizers on the Rosenbrock Banana Function.
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7 FUNDAMENTALS

7 Fundamentals

“An equation of cruel optimization exists when something youmodel is actually a limit on your
behavior. It might involve profit, or a kind of utility; it might be a fantasy of game theoretic
conduct, or a political project. It might rest in something simpler, too, like new jargon that
promises to induce in you a tenure-tracked way of being. These kinds of optimization are not
inherently cruel. They become cruel only when the object that draws your analysis actively
impedes the aim that brought you to it initially.” (JWK 2022)

Optimization theory, or cruel optimization3, underlies all the different fields within the business school. We
provide an overview of unconstrained, constrained, and convex optimization in this chapter and allude to
these core concepts throughout the rest of the notes.

7.1 Unconstrained Optimization

We will focus on the the maximization problem. Any minimization problem can be transformed into
a maximization problem by flipping the sign. An unconstrained optimization problem is:

For some 𝑆 ⊂ R𝑘 and some function 𝑓 : 𝑆 → R,

max
𝑥∈𝑆

𝑓 (𝑥),

which we call the unconstrained optimization problem (or program) through this section. Let 𝑥∗ be one
element in the set of the maximizers, then we write

𝑥∗ ∈ arg max
𝑥∈𝑆

𝑓 (𝑥) .

If the optimization problem has a unique solution, we write

𝑥∗ = arg max
𝑥∈𝑆

𝑓 (𝑥) .

Example 18. (Monopolist profit maximization) Amonopolist firm solves the profit maximization problem

max
𝑝∈[0,∞)

𝑝 · 𝑞(𝑝) − 𝑐 (𝑞(𝑝)),

where 𝑝 is price, 𝑞(·) is the demand function, and 𝑐 (·) is the cost function.

Definition 4. For an optimization problem, let 𝑆 be the set of points that satisfy all constraints. Then,
𝑥∗ ∈ 𝑆 is a local maximum if ∃𝜖 > 0, such that ∥𝑥∗ − 𝑥 ∥ < 𝜖 implies 𝑓 (𝑥∗) ≥ 𝑓 (𝑥). We say 𝑥∗ ∈ 𝑆 is a
strict local maximum if ∃𝜖 > 0, such that for 𝑥 ≠ 𝑥∗, ∥𝑥∗ − 𝑥 ∥ < 𝜖 implies 𝑓 (𝑥∗) > 𝑓 (𝑥). Also, 𝑥∗ ∈ 𝑆
is a global maximum if ∀𝑥 ∈ 𝑆 , 𝑓 (𝑥∗) ≥ 𝑓 (𝑥); accordingly, 𝑥∗ is said to be a strict global maximum if
∀𝑥 ∈ 𝑆 , 𝑓 (𝑥∗) > 𝑓 (𝑥).

We introduce a set of necessary conditions for local maxima.
3In reference to concept of cruel optimism: https://www.dukeupress.edu/cruel-optimism
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For some differentiable function 𝑓 : 𝑆 → R with 𝑆 ⊂ R𝑘 , the gradient of 𝑓 is

∇𝑓 (𝑥1, . . . , 𝑥𝑘 ) =


𝜕
𝜕𝑥1
𝑓 (𝑥1, . . . , 𝑥𝑘 )

...

𝜕
𝜕𝑥𝑘

𝑓 (𝑥1, . . . , 𝑥𝑘 )


.

Theorem 6. (First Order Condition/FOC) We say 𝑥 ∈ 𝑆 is an interior point of 𝑆 if there exists an open set
𝑈 ⊂ 𝑆 such that 𝑥 ∈ 𝑈 . Let 𝑓 be differentiable at some 𝑥∗ ∈ 𝑆 . For the unconstrained optimization problem,
if 𝑥∗ is an interior point of 𝑆 and a local maximum of 𝑓 , then we must have ∇𝑓 (𝑥∗) = 0.

Proof. Suppose ∇𝑓 (𝑥∗) ≠ 0. WLOG, let 𝑓1(𝑥∗) > 0. Pick 𝜖 such that 0 < 𝜖 < 𝑓1(𝑥∗). Note that

𝑓1(𝑥∗) = lim
ℎ↓0

𝑓 (𝑥∗ + ℎ𝑒1) − 𝑓 (𝑥∗)
ℎ

,

so there exists 𝛿 > 0 such that |ℎ | < 𝛿 implies���� 𝑓 (𝑥∗ + ℎ𝑒1) − 𝑓 (𝑥∗)
ℎ

− 𝑓1(𝑥∗)
���� < 𝜖.

This implies for each 0 < ℎ < 𝛿 ,

𝑓1(𝑥∗) − 𝜖 <
𝑓 (𝑥∗ + ℎ𝑒1) − 𝑓 (𝑥∗)

ℎ
< 𝑓1(𝑥∗) + 𝜖,

i.e.
𝑓 (𝑥∗ + ℎ𝑒1) > 𝑓 (𝑥∗) + (𝑓1(𝑥∗) − 𝜖)ℎ.

Thus, within any neighborhood of 𝑥∗ with radius 𝑑 , pick ℎ such that 0 < ℎ < min{𝛿, 𝑑} and we have

𝑓 (𝑥∗ + ℎ𝑒1) > 𝑓 (𝑥∗),

contradicting 𝑥∗ being local maximum. □

Definition 5. We call 𝑥 ∈ 𝑆 a critical point if ∇𝑓 (𝑥) = 0. That means, when solving the unconstrained
optimization problem, we only need to check all the critical points and boundary points of 𝑆 .

If 𝑓 is twice-differentiable, we write the second partial derivative for some 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑘} as

𝑓𝑖 𝑗 (𝑥1, . . . , 𝑥𝑘 ) =
𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗
𝑓 (𝑥1, . . . , 𝑥𝑘 ) =

𝜕

𝜕𝑥 𝑗

(
𝜕

𝜕𝑥𝑖
𝑓 (𝑥1, . . . , 𝑥𝑘 )

)
.
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Definition 6. We define the Hessian of 𝑓 at 𝑥 = (𝑥1, . . . , 𝑥𝑘 ) as

∇2 𝑓 (𝑥1, . . . , 𝑥𝑘 ) =



𝑓11 𝑓12 . . . 𝑓1𝑘

𝑓21 𝑓22 . . . 𝑓2𝑘
...

...
. . .

...

𝑓𝑘1 𝑓𝑘2 . . . 𝑓𝑘𝑘


.

This matrix is also denoted as the Hessian matrix of 𝑓 .

Definition 7. A function 𝑓 : 𝑆 → R is continuously differentiable if the partial derivative 𝜕𝑓 /𝜕𝑥𝑖
is continuous for each 𝑖 . We say 𝑓 is twice-continuously differentiable if for each 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑘},
𝑓𝑖, 𝑗 : 𝑆 → R is a continuous function.

Theorem 7. (Second Order Condition/SOC) Suppose 𝑓 is twice-continuously differentiable in the uncon-
strained optimization problem. If 𝑥∗ is an interior point of 𝑆 and a local maximum, then ∇2 𝑓 (𝑥∗) is negative
semi-definite.

Remark. Unless the problem is univariate, we rarely use the SOC because it is tedious to check whether a
matrix is negative semi-definite.

Theorem 8. (Envelope Theorem) Let 𝑓 (𝑥 ;𝑎) be a function of 𝑥 ∈ 𝑆 ⊂ R𝑘 and 𝑎 ∈ 𝐴 ⊂ R. Assume
𝑓 (𝑥 ;𝑎) is continuously differentiable in 𝑥 ∈ 𝑆 for each 𝑎 ∈ 𝐴 and 𝑆 is open. For each 𝑎 ∈ 𝐴, let 𝑥∗(𝑎) =

arg max𝑥∈𝑆 𝑓 (𝑥 ;𝑎) and assume 𝑥∗(𝑎) is continuously differentiable in 𝑎. Then,

𝑑

𝑑𝑎
𝑓 (𝑥∗(𝑎);𝑎) = 𝜕

𝜕𝑎
𝑓 (𝑥∗(𝑎);𝑎) = 𝜕

𝜕𝑎
𝑓 (𝑥 ;𝑎)

����
𝑥=𝑥∗ (𝑎)

.

Proof. Write out the total derivative and apply the first order condition. □

Example 19. Suppose the profit of a firm is determined by

𝜋 (𝑥 ;𝑝) = 𝑝𝑥 − 𝑐 (𝑥),

where 𝑥 is quantity, 𝑝 is the price of the product, and 𝑐 (𝑥) is differentiable. We assume the firm is a
price-taker such that we treat 𝑝 as given. Assume 𝑐 (𝑥) is smooth. The FOC of the profit maximization
problem requires 𝑝 = 𝑐′(𝑥∗) (or equivalently that marginal revenue equals to marginal cost), where 𝑥∗ is
the maximizer. Then, the Envelope Theorem says

𝑑

𝑑𝑝
𝜋 (𝑥∗(𝑝);𝑝) = 𝑥∗(𝑝).

One popular approach to computationally determining the optimal point is gradient descent and stochas-
tic gradient descent.
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7.2 Constrained Optimization

A constrained optimization problem is just an unconditional optimization problem subject to constraints.
If the constraints bind, or play a role in the optimization problem, then for the same objective function,
the constrained solution generally deviates from the unconstrained problem.

Example 20. (Consumer utility maximization) A consumer facing a budget constraint solves the opti-
mization problem

max
𝑥1,...,𝑥𝑛

𝑢 (𝑥1, . . . , 𝑥𝑛)

𝑠 .𝑡 . 𝑝1𝑥1 + · · · + 𝑝𝑛𝑥𝑛 ≤ 𝑚
𝑥𝑖 ≥ 0 for 𝑖 = 1, . . . , 𝑛,

where 𝑢 (·) is the utility function, 𝑝𝑖 the price for 𝑥𝑖 , and𝑚 is the budget.

Example 21. (Monopolist profit maximization with a price cap) Revisit our example monopolist program
from before, we assume the monopolist firm solves the profit maximization problem but faces a price cap
of 𝑝0 imposed by the government.

max
𝑝∈[0,∞)

𝑝 · 𝑞(𝑝) − 𝑐 (𝑞(𝑝))

𝑠 .𝑡 . 𝑝 ≤ 𝑝0

where 𝑝 is price, 𝑞(·) is the demand function, and 𝑐 (·) is the cost function.

Remark.
1. Most microeconomics problems are written as a constrained optimization problem. Usually some

form of a constraint exists in reality that impacts the optimization program (i.e. economies of scale
occur up to a point or scarce resources exist).

2. The “economics” of the optimization problem can be boiled down to the researcher’s choice of the
objective function and the constraint. For example, for the consumer’s problem, consumer prefer-
ences are pinned down the objective function and the problem’s setting are pinned down by the
constraint.

More generally, a constrained optimization is defined as for some open set 𝑆 ⊂ R𝑘 ,

max
𝑥∈𝑆

𝑓 (𝑥)

𝑠 .𝑡 . 𝑔𝑖 (𝑥) ≥ 0, ∀𝑖 = 1, . . . , 𝑛

ℎ 𝑗 (𝑥) = 0, ∀𝑗 = 1, . . . ,𝑚.

The Lagrangian of this optimization problem is

L(𝑥, _, `) = 𝑓 (𝑥) +
𝑛∑︁
𝑖=1

_𝑖𝑔𝑖 (𝑥) +
𝑚∑︁
𝑗=1

` 𝑗ℎ 𝑗 (𝑥) = 𝑓 (𝑥) + _𝑇𝑔(𝑥) + `𝑇ℎ(𝑥)
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where _ = (_1, . . . , _𝑛)𝑇 , ` = (`1, . . . , `𝑚)𝑇 , 𝑔(𝑥) = (𝑔1(𝑥), . . . , 𝑔𝑛 (𝑥))𝑇 , ℎ(𝑥) = (ℎ1(𝑥), . . . , ℎ𝑚 (𝑥))𝑇 . Here
_ and ` are defined as the Lagrangian Multipliers.

The Karush-Kuhn-Tucker conditions (KKT) are given by
1. (primal constraints) 𝑔𝑖 (𝑥) ≥ 0, ∀𝑖 = 1, . . . , 𝑛; ℎ 𝑗 (𝑥) = 0, ∀𝑗 = 1, . . . ,𝑚.
2. (dual constraints) _𝑖 ≥ 0, ∀𝑖 = 1, . . . , 𝑛.
3. (complementary slackness) _𝑖𝑔𝑖 (𝑥) = 0, ∀𝑖 = 1, . . . , 𝑛.
4. (vanishing gradient) ∇𝑥L = 0.

KKT is a set of conditions that is necessary for optimality under regularity conditions (say, 𝑓 , 𝑔𝑖 , ℎ 𝑗 are
continuously differentiable).

Example 22. Consider the following program.

max
𝑥,𝑦

𝑥 − 𝑦2

𝑠 .𝑡 . 𝑥 ≥ 0, 𝑦 ≥ 0

𝑥2 + 𝑦2 = 4.

KKT conditions specify:

Primal : 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑥2 + 𝑦2 = 4

Dual : _1 ≥ 0, _2 ≥ 0

Complementary Slackness : _1𝑥 = 0, _2𝑦 = 0

Gradient : 1 + _1 + 2`𝑥 = 0,−2𝑦 + _2 + 2`𝑦 = 0,

which yields (𝑥∗, 𝑦∗) = (2, 0).

Example 23. (Simplified utility maximization) Suppose there are two goods and ignore the positivity
constraint. A consumer facing a budget constraint solves the optimization problem

max
𝑥1,𝑥2

𝑢 (𝑥1, 𝑥2)

𝑠 .𝑡 . 𝑝1𝑥1 + 𝑝2𝑥2 ≤ 𝑚

The KKT conditions specify:

Primal :𝑚 − 𝑝1𝑥1 − 𝑝2𝑥2 ≥ 0

Dual : _ ≥ 0

Complementary Slackness : _(𝑚 − 𝑝1𝑥1 − 𝑝2𝑥2) = 0

Gradient : 𝜕𝑢/𝜕𝑥1 − _𝑝1 = 0, 𝜕𝑢/𝜕𝑥2 − _𝑝2 = 0,

implying

_ =
𝜕𝑢/𝜕𝑥1

𝑝1
=
𝜕𝑢/𝜕𝑥2

𝑝2
,

i.e. utility increment of spending one more dollar on good 𝑥1 is equal to that of good 𝑥2.
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7.3 Convex Optimization

Definition 8. A set 𝑋 ⊂ R𝑘 is a convex set if for each \ ∈ (0, 1) and 𝑥1, 𝑥2 ∈ 𝑋 , \𝑥1 + (1 − \ )𝑥2 ∈ 𝑋 ,
where 𝑥 = \𝑥1 + (1 − \ )𝑥2 is called a convex combination of 𝑥1 and 𝑥2.

In other words, a convex set is closed under convex combination. The convex hull of a set 𝑆 is the set
of all convex combinations of points in 𝑆 .

Proposition 3. Suppose 𝐴, 𝐵 ⊂ 𝑋 . If 𝐴 and 𝐵 are convex, then 𝐴 ∩ 𝐵 is convex.

Proof. Use the prior definition. □

Definition 9. A set 𝑋 is called a hyperplane if 𝑋 = {𝑥 ∈ R𝑘 |𝑎𝑇𝑥 = 𝑏} for some nonzero 𝑎 ∈ R𝑘 and
𝑏 ∈ R.

Theorem 9. (Separating Hyperplane Theorem) If 𝐶, 𝐷 ⊂ R𝑘 are nonempty disjoint convex sets, there exists
a nonzero vector 𝑎 ∈ R𝑘 and 𝑏 ∈ R such that 𝑎𝑇𝑥 ≤ 𝑏 for each 𝑥 ∈ 𝐶 and 𝑎𝑇𝑥 ≥ 𝑏 for each 𝑥 ∈ 𝐷 .

Theorem 10. (Supporting Hyperplane Theorem) A supporting hyperplane to a set 𝐶 at a boundary point 𝑥0

is a hyperplane 𝑋 such that 𝑋 = {𝑥 ∈ R𝑘 |𝑎𝑇𝑥 = 𝑎𝑇𝑥0} for some nonzero vector 𝑎 ∈ R𝑘 , and 𝑎𝑇𝑥 ≤ 𝑎𝑇𝑥0 for
each 𝑥 ∈ 𝐶 . If 𝐶 is a convex set, then there exists a supporting hyperplane to 𝐶 at each boundary point of 𝐶 .

Remark.
1. The separating hyperplane theorem says that if there are two disjoint, convex sets in finite dimen-

sional Euclidean space, then you can draw a hyperplane (or “line”) that separates the two.
2. The supporting hyperplane theorem says that for a convex set, there exists a hyperplane that inter-

sects the a point on the boundary of the set once. This hyperplane is the “supporting hyperplane”.
Note that a point on the boundary of a convex set can have many supporting hyperplanes. Further,
the convexity of the set is importance because otherwise the supporting hyperplane for boundary
point can intersect the set somewhere else (and would no longer be a “supporting hyperplane”)

3. The best way to get intuition for these two theorems is to draw 2−𝐷 convex sets with the hyperplane
being a line.

Definition 10. A function 𝑓 : 𝑋 → R is a convex function if 𝑋 is convex and for each \ ∈ (0, 1) and
𝑥1, 𝑥2 ∈ 𝑋 , 𝑓 (\𝑥1 + (1 − \ )𝑥2) ≤ \ 𝑓 (𝑥1) + (1 − \ ) 𝑓 (𝑥2). We say 𝑓 is strictly convex if 𝑋 is convex and for
each \ ∈ (0, 1) and 𝑥1, 𝑥2 ∈ 𝑋 , 𝑓 (\𝑥1 + (1 − \ )𝑥2) < \ 𝑓 (𝑥1) + (1 − \ ) 𝑓 (𝑥2).

Definition 11. A function 𝑓 : 𝑋 → R is concave if −𝑓 is convex. We say 𝑓 is strictly concave if −𝑓 is
strictly convex.

Lemma 3. Let 𝑋 ⊂ R𝑘 . If 𝑓 : 𝑋 → R is convex, then 𝐶 = {(𝑥,𝑦) ∈ R𝑘+1 : 𝑦 ≥ 𝑓 (𝑥), 𝑥 ∈ 𝑋 } is convex.

Proof. Let 𝑧1 = (𝑥1, 𝑦1), 𝑧2 = (𝑥2, 𝑦2) ∈ 𝐶 . Then we have 𝑦1 ≥ 𝑓 (𝑥1) and 𝑦2 ≥ 𝑓 (𝑥2). We want to show
convex combination 𝑧 = _𝑧1 + (1 − _)𝑧2 ∈ 𝐶 for _ ∈ (0, 1). Note that by convexity,

𝑓 (_𝑥1 + (1 − _)𝑥2) ≤ _𝑓 (𝑥1) + (1 − _) 𝑓 (𝑥2) ≤ _𝑦1 + (1 − _)𝑦2
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so in turn,
𝑧 = (_𝑥1 + (1 − _)𝑥2, _𝑦1 + (1 − _)𝑦2) ∈ 𝐶.

□

Theorem 11. (Jensen’s Inequality) If 𝑆 ⊂ R𝑘 and 𝑓 : 𝑆 → R is convex, then for some random variable 𝑋
such that Pr(𝑋 ∈ 𝑆) = 1 and 𝐸 [|𝑋 |] < ∞, we have 𝑓 (𝐸 [𝑋 ]) ≤ 𝐸 [𝑓 (𝑋 )].

Proof. Let 𝑧0 = (𝐸 [𝑋 ]𝑇 , 𝑓 (𝐸 [𝑋 ]))𝑇 . By the previous lemma and the supporting hyperplane theorem, at
𝑧0 ∈ R𝑘+1, there exists a supporting hyperplane to the set 𝐶 = {(𝑥,𝑦) ∈ R𝑘+1 : 𝑦 ≥ 𝑓 (𝑥), 𝑥 ∈ 𝑆} such that
𝑍 = {𝑧 ∈ R𝑘+1 : 𝑎𝑇𝑧 = 𝑎𝑇𝑧0}, where we write 𝑎 = (𝑎𝑇𝑥 , 𝑎𝑦)𝑇 to denote the 𝑥 part and 𝑦 part, separately.
Note 𝑎𝑦 ≠ 0, unless 𝑆 is singleton, in which case Jensen’s inequality trivially holds.

Then for each (𝑥𝑇 , 𝑦)𝑇 ∈ 𝑍 , we can write 𝑦 = −𝑎−1
𝑦 𝑎

𝑇
𝑥𝑥 + 𝑎−1

𝑦 𝑎
𝑇𝑧0 using the supporting hyperplane

construction and note 𝑦 ≤ 𝑓 (𝑥) for points 𝑥 and outcome 𝑦 on the supporting hyperplane. Therefore,

𝐸 [𝑓 (𝑋 )] ≥ 𝐸 [−𝑎−1
𝑦 𝑎

𝑇
𝑥𝑋 + 𝑎−1

𝑦 𝑎
𝑇𝑧0] = −𝑎−1

𝑦 𝑎
𝑇
𝑥𝐸 [𝑋 ] + 𝑎−1

𝑦 𝑎
𝑇𝑧0 = 𝑓 (𝐸 [𝑋 ]) .

The inequality holds since we are taking expectations over 𝑦 ≤ 𝑓 (𝑥) and for point (𝑋𝑇 , 𝑦)𝑇 ∈ 𝑍 on the
supporting hyperplane, we see 𝑎𝑇𝑥𝑋 +𝑎𝑦𝑦 = 𝑎𝑇𝑧0 (and we can rearrange the equation to isolate𝑦. Then, the
first equality is because of linearity and the last equality holds because 𝑧0 ∈ 𝑍 so 𝑎𝑇𝑥𝐸 [𝑋 ] + 𝑎𝑦 𝑓 (𝐸 [𝑋 ]) =
𝑎𝑇𝑧0 (and we can rearrange the equation to isolate 𝑓 (𝐸 [𝑋 ])). □

A convex optimization problem is a constrained optimization problem where 𝑓 and 𝑔1, . . . , 𝑔𝑛 are
all concave functions, and ℎ1, . . . , ℎ𝑚 are affine functions.

Lemma 4. If 𝑔 : 𝑆 → R is concave, then {𝑥 ∈ 𝑆 : 𝑔(𝑥) ≥ 0} is convex where 𝑔(𝑥) are the inequality
constraints in the optimization problem.

Proof. Use the prior definition. □

Theorem 12. A local maximum of a convex optimization problem is a global maximum.

Proof. Let 𝑆 be the set of points that satisfy all constraints. Then 𝑆 is convex by previous lemma and
proposition. The optimization problem becomes max𝑥∈𝑆 𝑓 (𝑥), for 𝑆 convex and 𝑓 concave. Let 𝑥0 be a
local maximization to this problem, and suppose by way of contradiction that there exists 𝑥1 ∈ 𝑆 such that
𝑓 (𝑥1) > 𝑓 (𝑥0). For each 𝜖 > 0, pick _ such that

0 < _ <
𝜖

∥𝑥0 − 𝑥1∥
.

Let the convex combination be 𝑧 = _𝑥1 + (1 − _)𝑥0, and we have

∥𝑥0 − 𝑧∥ = _∥𝑥0 − 𝑥1∥ ≤ 𝜖

so 𝑧 ∈ 𝐵𝜖 (𝑥0). But 𝑓 (𝑧) ≥ _𝑓 (𝑥1) + (1 − _) 𝑓 (𝑥0) > 𝑓 (𝑥0), contradicting 𝑥0 being local maximum. □
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8 Topics

8.1 Duality Gap

There are primal and dual representation of an optimization problem or program. In our KKT formulation,
we wrote the primal representation of a constrained optimization problem. For some open set 𝑆 ⊂ R𝑘 ,
the primal problem is,

max
𝑥∈𝑆

𝑓 (𝑥)

𝑠 .𝑡 . 𝑔𝑖 (𝑥) ≥ 0, ∀𝑖 = 1, . . . , 𝑛

ℎ 𝑗 (𝑥) = 0, ∀𝑗 = 1, . . . ,𝑚.

The Lagrangian of the primal problem is

L(𝑥, _, `) = 𝑓 (𝑥) +
𝑛∑︁
𝑖=1

_𝑖𝑔𝑖 (𝑥) +
𝑚∑︁
𝑗=1

` 𝑗ℎ 𝑗 (𝑥) = 𝑓 (𝑥) + _𝑇𝑔(𝑥) + `𝑇ℎ(𝑥)

where _ = (_1, . . . , _𝑛)𝑇 , ` = (`1, . . . , `𝑚)𝑇 , 𝑔(𝑥) = (𝑔1(𝑥), . . . , 𝑔𝑛 (𝑥))𝑇 , ℎ(𝑥) = (ℎ1(𝑥), . . . , ℎ𝑚 (𝑥))𝑇 , and _
and ` are the Lagrangian Multipliers. The optimal value of the primal problem, denoted as 𝑝∗ satisfies

𝑝∗ = sup
𝑥

inf
_≥0,`

𝐿(𝑥, _, `) .

Given the Lagrangian, the Lagrange dual function is

𝑑 (_, `) = sup
𝑥

𝐿(𝑥, _, `)

The equivalent dual representation of the problem is,

min
_,`

𝑑 (_, `)

𝑠 .𝑡 . _𝑖 ≥ 0, ∀𝑖 = 1, . . . , 𝑛

or equivalently

min
_,`

sup
𝑥∈𝑆

𝑓 (𝑥) + _𝑇𝑔(𝑥) + `𝑇ℎ(𝑥)

𝑠 .𝑡 . _𝑖 ≥ 0, ∀𝑖 = 1, . . . , 𝑛

where _ = (_1, . . . , _𝑛)𝑇 , ` = (`1, . . . , `𝑚)𝑇 , 𝑔(𝑥) = (𝑔1(𝑥), . . . , 𝑔𝑛 (𝑥))𝑇 , ℎ(𝑥) = (ℎ1(𝑥), . . . , ℎ𝑚 (𝑥))𝑇 , and
_ and ` are dual variables. The dual representation is inherently related to the Lagrangian approach to
solving a primal problem and the latter is often termed the Lagrangian dual problem. The optimal value
of the dual problem, denoted as 𝑑∗, satisfies,

𝑑∗ = inf
_≥0,`

sup
𝑥

𝐿(𝑥, _, `).
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For a convex optimization problem, we almost always have strong duality, or that the solution to
primal problem and the dual problem are equivalent. For a general optimization problem, this does not
necessarily hold, and the duality gap is the difference between the primal and the dual solutions or 𝑝∗−𝑑∗.
We denote the primal solution as 𝑝∗ and the dual solution as 𝑑∗.

When the duality gap is negative, then weak duality holds. We can show 𝑝∗ ≤ 𝑑∗ or the primal
solution will always be less or equal to the dual solution for our maximization problem. Note that for a
minimization problem, the primal solution will always be greater than or equal to the dual solution. The
proof of this can be shown with the minimax inequality.

8.2 Optimal Transport and the Monge-Kantorovich Problem

In essence, optimal transport is about moving mass from one probability distribution to another subject
to some transportation cost. Common optimization, computer science, and economics problems can be
written in the optimal transport framework and computationally solved. Recent developments in compu-
tational solutions algorithms have made optimal transport problems that were previously too difficult to
now be solvable.

We have the problem of assigning possibly infinite number of workers and firms. Each worker works
for one firm and each firm cam hire one worker. Workers and firms have heterogeneous characteristics,
𝑥 ∈ X for workers and 𝑦 ∈ Y for firms, and we let X,Y ⊂ R𝑑 . Workers and firms are in equal mass, and
we normalize the total mass of workers and firms to 1. The distribution of workers is 𝑃 over X and the
distribution firms is 𝑄 over Y.

We define a coupling to determine which workers are assigned to which firms. If we had a finite
number of workers and firms, we just need to count the workers of type 𝑥 that are matched to firms of
type 𝑦. The coupling more generally is defined as the probability measure 𝜋 of the occurrence of worker-
firm pairs. If (𝑋,𝑌 ) ∼ 𝜋 is a joint random pair, then 𝑋 ∼ 𝑃 and 𝑌 ∼ 𝑄 where 𝑋 ∼ 𝑃 means 𝑋 has
distribution 𝑃 . The first margin of 𝜋 is 𝑃 and the second margin is 𝑄 .

Definition 12. The set of couplings of probability distributions 𝑃 and 𝑄 is the set of probability distribu-
tions over X × Y with first and second margins 𝑃 and 𝑄 . The set is denoted as M(𝑃,𝑄). In other words,
a probability measure 𝜋 over X ×Y is inM(𝑃,𝑄) if and only if

𝜋 (𝐴 × Y) = 𝑃 (𝐴) and 𝜋 (X × 𝐵) = 𝑄 (𝐵)

holds for every subset 𝐴 of X and 𝐵 of Y. By extension, a random pair (𝑋,𝑌 ) ∼ 𝜋 , where 𝜋 ∈ M(𝑃,𝑄)
will also be called a coupling of 𝑃 and Q.

The simplest coupling is the independent coupling (or sometimes called random matching). Here, we
let 𝜋 (𝐴 × 𝐵) = 𝑃 (𝐴)𝑄 (𝐵) so that if (𝑋,𝑌 ) ∼ 𝜋 , then 𝑋 ∼ 𝑃 and 𝑌 ∼ 𝑄 . While this coupling ensures the set
M(𝑃,𝑄) is non-empty, this also means that we have random matches between firms and workers.

We can also consider couplings (𝑋,𝑌 ) such that 𝑌 = 𝑇 (𝑋 ) is a deterministic function of 𝑋 . This
ensures that workers of type 𝑥 are assigned to the same type of firm𝑇 (𝑥) ∈ Y. This type of assignment is
called pure assignment or is called the Monge Coupling. The constraint on 𝑇 (·) that ensures (𝑋,𝑇 (𝑋 )) is
a coupling of 𝑃 and 𝑄 is equivalent to the five following conditions.

1. If 𝑋 ∼ 𝑃 , then 𝑇 (𝑋 ) ∼ 𝑄 .
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2. Equality 𝑃 (𝑇 −1(𝐵)) = 𝑄 (𝐵) holds for every subset 𝐵 of Y.
3. The coupling 𝜋 (𝑥,𝑦) = 𝑃 (𝑥)𝛿 (𝑦 −𝑇 (𝑥)) is in M(𝑃,𝑄) where 𝛿 (·) is the Dirac delta function.
4. For any𝜙 ∈ 𝐿1(𝑄) (or𝜙 is an function that is integrable with respect to 𝑃 ), 𝐸𝑃 [𝜙 (𝑇 (𝑋 ))] = 𝐸𝑄 [𝜙 (𝑌 )].
5. When 𝑃 and 𝑄 have respective densities 𝑓𝑝 and 𝑓𝑄 , and when𝑇 is smooth, then the Monge-Ampère

Equation holds, or 𝑓𝑃 (𝑥) = | det𝐷𝑇 (𝑋 ) |𝑓𝑄 (𝑇 (𝑥), which is just a multivariate change of variables.
These equivalent conditions are denoted as

𝑇 #𝑃 = 𝑄

where𝑇 #𝑃 is the distribution of𝑇 (𝑋 ) when𝑋 ∼ 𝑃 and is called the push-forward probability of probability
distribution 𝑃 by map 𝑇 . In the probability literature, this relation is also denoted as 𝑃𝑇 −1 = 𝑄 .

Outside of the Monge couplings, couplings can generally be characterized by a family of conditional
probability distributions. These are Markov kernels 𝜋 (𝑑𝑦 |𝑥) such that

∫
X 𝜋 (𝐵 |𝑥)𝑑𝑃 (𝑥) = 𝑄 (𝐵), ∀𝐵 ⊆ Y.

We assume if worker 𝑥 workers for firm 𝑦, this generates output Φ(𝑥,𝑦) which is measured in dollars.
The social planner’s problem is how to assign workers to firms to maximize the total output. This is the
problem addressed in the Monge-Kantorovich Problem.

The Monge problem only looks at the possible pure assignments of firms to maximize the overall
average surplus,

max
𝑇 ( ·)

𝐸𝑃 [Φ(𝑋,𝑇 (𝑋 ))]

s.t. 𝑇 #𝑃

One possible function form for the total surplus is Φ(𝑥,𝑦) = −|𝑥 −𝑦 |, which is a form of the negative earth
mover’s distance. If 𝑥,𝑦 are locations of the workers and firms, the total surplus is higher is the assigned
worker is closely located to the her assigned firm.

TheMonge Problem remained unsolved until Kantorovich’s work with linear programming relaxation.
Rather than assign 𝑥 deterministically to work with firm 𝑇 (𝑥), we can introduce randomization the as-
signment mechanism. So instead of maximizing over the deterministic maps 𝑇 (𝑥), we can maximize over
the conditional probabilities, or Markov kernels, of assigning worker 𝑥 to firm 𝑦. Then we replace Φ(𝑥,𝑦)
in the Monge Problem with 𝐸𝜋 [Φ(𝑥,𝑌 ) |𝑋 = 𝑥], where 𝜋 ∈ M(𝑃,𝑄) is coupling between probabilities 𝑃
and 𝑄 that is not necessary pure. Then, we get the Kantorovich problem,

max
𝜋∈M(𝑃,𝑄 )

𝐸𝜋 [Φ(𝑋,𝑌 )]

which has some difference to the Monge problem. The Kantorovich problem (1) is a linear programming
problem and (2) will have a solution 𝜋 . The former will lead us to a duality result and the latter is nice
because the Monge problem does not always have a solution. Often optimal transport problems are set up
such that the Monge solution exists and coincides with the Kantorovich solution. Then, the Kantorovich
relaxation solves the Monge problem.

Theorem 13. (Monge-Kantorovich Duality) Let X and Y be subsets of R𝑑 and 𝑃,𝑄 be probability measures
on X,Y respectively. We have Φ : X ×Y → R∪ {−∞} be a upper semi-continuous surplus function bounded
from above. Then, we have
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(1) the value of the primal Monge-Kantorovich problem

max
𝜋∈M(𝑃,𝑄 )

𝐸𝜋 [Φ(𝑋,𝑌 )]

coincides with the value of the dual

inf
𝑢,𝑣

𝐸𝑃 [𝑢 (𝑥)] + 𝐸𝑄 [𝑣 (𝑌 )]

𝑠 .𝑡 . 𝑢 (𝑥) + 𝑣 (𝑦) ≥ Φ(𝑥,𝑦)

where 𝑢, 𝑣 are measurable and integrable functions. The inequality constraint should hold for almost
every x and almost every y

(2) an optimal solution to the primal Monge-Kantorovich problem exists.

We have strong duality for this infinite dimensionality linear programming problem from (1) and (2)
tells us the solution to the primal problem exists. We can interpret𝑢 (𝑥) and 𝑣 (𝑦) as the equilibrium payoffs
that a worker 𝑥 and firm 𝑦 will get at equilibrium. Then, the total surplus is the dual problem is the sum
of the worker’s surplus and the firm’s surplus. While the theorem does not state the dual solution (𝑢, 𝑣)
exists, assume that it does for the following proposition.

Proposition 4. If (𝑢, 𝑣) is a solution to the dual of the Kantorovich problem, then we can redefine 𝑢 and 𝑣
such that they take +∞ for values outside of their supports 𝑃 and 𝑄 . Then,

𝑢 (𝑥) = sup
𝑦

(Φ(𝑥,𝑦) − 𝑣 (𝑦))

𝑣 (𝑦) = sup
𝑥

(Φ(𝑥,𝑦) − 𝑢 (𝑦))

should hold almost surely with respect to probabilities 𝑃 and 𝑄 respectively.

We can interpret 𝑢 (𝑥) as the market wage of the worker 𝑥 and the 𝑣 (𝑦) as the indirect surplus of the
firm𝑦. We can interpret the second equation as the firmwill not hire 𝑥 unless hiring 𝑥 yields a profit that is
equal to 𝑣 (𝑦). The first equation then describes the worker’s problem of choosing the firm optimally. Then,
our theorem acts like a welfare theorem. The primal solution, or the social planner’s problem solution,
will coincide with the dual solution, which is the decentralized equilibrium. We see that the decentralized
solution is further both Pareto efficient and in the utilitarian sense as it optimized the total surplus Φ(𝑥,𝑦)
over the possible matches.

9 Example

In the example, we will examine the performance of different optimizers on the well-known Rosenbrock
Banana Function. Hopefully, this should build intuition on the performance of different optimizers and
shed some light into the black-box optimizers that are built-in to modern statistical software programs.
Please see the RMarkdown notebook for the example.
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Optimization Example
Booth Math Camp (Autumn 2021)

Walter W. Zhang

July 01, 2021

In this example, we will examine the performance of different optimizers on the well-known Rosenbrock
Banana Function. Hopefully, this should build intuition on the performance of different optimizers and shed
some light into the black-box optimizers that are built-in to modern statistical software programs. In R, the
common, off-the-shelf optimizers have been wrapped up in the optim function.

Contents
Setup 1

BFGS 4

Nelder-Mead 5

Conjugate Gradient (CG) 7

Comparisons 8

# Load Packages
require(ggplot2)
require(scatterplot3d)
require(scales)

We consider a 2-D Rosenbrock Banana function,

f(x1, x2) = 100(x2 − x2
1)2 + (x1 − 1)2

which has the analytic gradient,

∇f(x) =
(

2(200x3
1 − 200x1x2 + x1 − 1)
200(x2 − x2

1)

)
.

Looking at the function, the minimum occurs at (x1, x2) = (1, 1) and the function has a value of 0. We will
examine the performance of the BFGS, Nelder-Mead, and Conjugate Gradient optimization algorithms.

Setup
# x is a vector with two elements
objective <- function(x)
{
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obj <- 100 * (x[2] - x[1]ˆ2 )ˆ2 + (x[1] - 1)ˆ2
return(obj)

}

objective(c(1,1))

## [1] 0
gradient <- function(x)
{
grad <- c(2*(200*x[1]ˆ3 - 200*x[1]*x[2] + x[1] - 1),

200*(x[2]-x[1]ˆ2))
return(grad)

}

# Simulate the data
lower_bound <- c(-2.5)
upper_bound <- c( 2.5)
sample_num <- 100L

set.seed(1234L)
data_mat <- expand.grid(x1 = (seq(lower_bound, upper_bound, length.out = sample_num)),

x2 = (seq(lower_bound, upper_bound, length.out = sample_num)))
obj_vec <- apply(data_mat, 1, objective)
grad_vec <- apply(data_mat, 1, gradient)

# Plot the surface plot
graph_DT <- data.frame(x1 = data_mat[,1],

x2 = data_mat[,2],
objective = obj_vec)

ggplot(graph_DT, aes(x1, x2, z = objective)) +
stat_contour() +
xlim(lower_bound, upper_bound) +
ylim(lower_bound, upper_bound) +
theme_bw() +
theme(strip.background = element_rect(colour = "gray40", fill = "aliceblue"))
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# Plot a 3-D Scatter
scatterplot3d(graph_DT[sample(1:nrow(graph_DT), 3000),],

pch = 16, color=alpha("steelblue", 0.5) )
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The Rosenbrock function is a non-convex function and the global minimum is within a long and narrow
parabolic shaped value. While finding the valley is relatively easy, pinning down the global minimum within
the valley is more difficult.

BFGS
We first examine the performance of BFGS (or the Broyden–Fletcher–Goldfarb–Shanno Algorithm). The
algorithm is an iterative quasi-Newton method that approximates the Hessian from the Gradient and whose
necessary condition for optimality is that the gradient is zero at the optimum. From a supplied starting point
or initial guess it does the following:

1. Compute the direction to move the gradient by numerically approximating the Hessian
2. Determine the acceptable step size given the direction found in the first step
3. Move in the new direction given the direction and step size
4. Update the Hessian approximation for the new point

The procedure terminates when the norm of the gradient is under some tolerance value (i.e. 10−6)
# BFGS
x0 <- c(-1, 2)

init_time <- Sys.time()
res_bfgs <- optim(x0,

objective,
gradient,
method = "BFGS",
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control = list(trace = 10))

## initial value 104.000000
## iter 10 value 6.536201
## iter 20 value 3.223389
## iter 30 value 0.000481
## iter 40 value 0.000000
## final value 0.000000
## converged
end_time <- Sys.time()
BFGS_time <- format(end_time - init_time, digits = 3)

Nelder-Mead
We then examine the Nelder-Mead performance. Nelder-Mead is a downhill simplex method that is a direct
search method based on the function value. However, the procedure is heuristic search method and can get
stuck on non-stationary points. We first denote a simplex as a n + 1 dimensional polytope on a n dimensional
surface. For the 1-D case this is a line segment, and in the 2-D case this is a triangle. The simplex then moves
as the algorithm iterates. From the simplex constructed around the proposed starting value, the general
approach of the procedure for minimization is as follows (use a triangle as the simplex the 2-D plane for
intuition):

1. Ordering: Order the vertices of the simplex by their function value (rank the edge of the triangle by
the function value)

2. Compute the centroid of the points excluding the vertex with highest function value
3. Reflection: Reflect one of the points on the simplex and see if has a smaller function value than the

excluded point (move a edge of the triangle across the triangle). If it is, then replace the excluded point
and form a new simplex and go to step 1. If the new point has the smallest function value for all points
on the simplex go to the next step.

4. Expansion/Extension: Move along the direction from the centroid to the new point (move out along the
triangle’s centroid to a edge point). This new point is the expanded point and if the expanded point is
better than the worst point on the simplex then move to the step 1. If not then go to the next step.

5. Contraction/Reduction: Move along the direction from the new point to the centroid (move in towards
the triangle’s centroid to a edge point). This new point is the contracted point and if the contracted
point is better than the worst point on the simplex then move to the step 1. If not then go to the next
step.

6. Shrinkage: Shrink the simplex by replacing the point except the best performing point (make the
triangle smaller). Then move to step 1.

The algorithm terminates when the simplex updates are small enough given some tolerance value (triangle
barely moves). Then the lowest point on the simplex (triangle) is returned as the optimum for the minimization
problem.

Note that this approach neither uses the gradient nor the hessian explicitly. If provided, the gradient can
help with the individual line searches for moving simplex vertices.
# Nelder-Mead
x0 <- c(-1, 2)

init_time <- Sys.time()
res_nm <- optim(x0,

objective,
gradient,
method = "Nelder-Mead",
control= list(trace = 10))
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## Nelder-Mead direct search function minimizer
## function value for initial parameters = 104.000000
## Scaled convergence tolerance is 1.54972e-06
## Stepsize computed as 0.200000
## BUILD 3 188.200000 104.000000
## EXTENSION 5 148.000000 17.320000
## REFLECTION 7 104.000000 7.720000
## LO-REDUCTION 9 17.320000 7.720000
## HI-REDUCTION 11 13.520000 7.720000
## HI-REDUCTION 13 8.178125 6.564221
## REFLECTION 15 7.720000 6.328167
## HI-REDUCTION 17 6.564221 6.191275
## REFLECTION 19 6.328167 5.879893
## HI-REDUCTION 21 6.191275 5.879893
## REFLECTION 23 5.957893 5.729399
## EXTENSION 25 5.879893 5.378041
## REFLECTION 27 5.729399 5.287197
## EXTENSION 29 5.378041 4.420000
## LO-REDUCTION 31 5.287197 4.420000
## LO-REDUCTION 33 4.704885 4.336536
## EXTENSION 35 4.420000 3.908420
## HI-REDUCTION 37 4.336536 3.908420
## EXTENSION 39 4.204598 3.546309
## LO-REDUCTION 41 3.908420 3.546309
## REFLECTION 43 3.717900 3.470733

.....

## REFLECTION 167 0.024408 0.015836
## REFLECTION 169 0.022062 0.014837
## REFLECTION 171 0.015836 0.011379
## REFLECTION 173 0.014837 0.009836
## LO-REDUCTION 175 0.011379 0.006739
## HI-REDUCTION 177 0.009836 0.006739
## HI-REDUCTION 179 0.007256 0.006434
## EXTENSION 181 0.006739 0.004402
## HI-REDUCTION 183 0.006434 0.004402
## EXTENSION 185 0.005283 0.003210
## EXTENSION 187 0.004402 0.000739
## HI-REDUCTION 189 0.003210 0.000739
## LO-REDUCTION 191 0.002540 0.000739
## EXTENSION 193 0.001442 0.000026
## LO-REDUCTION 195 0.000739 0.000026
## HI-REDUCTION 197 0.000141 0.000026
## HI-REDUCTION 199 0.000131 0.000026
## LO-REDUCTION 201 0.000029 0.000017
## HI-REDUCTION 203 0.000026 0.000001
## HI-REDUCTION 205 0.000017 0.000001
## LO-REDUCTION 207 0.000008 0.000001
## HI-REDUCTION 209 0.000003 0.000001
## Exiting from Nelder Mead minimizer
## 211 function evaluations used
end_time <- Sys.time()
NM_time <- format(end_time - init_time, digits = 3)
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Conjugate Gradient (CG)
The conjugate gradient method was initially developed to solve for the numerical solution of a system of linear
equations, but has been adapted for unconstrained optimization. It is usually implemented as an iterative
algorithm and is approximate optimization routine. At each step, the method uses conjugate gradients to
determine the step direction, and it then moves along the chosen direction. The benefit of this algorithm over
standard Newton methods is that it explicitly avoids matrix inversion and will be better computationally
feasible for larger problems.
# Conjugate Gradient
x0 <- c(-1, 2)

init_time <- Sys.time()
res_cg <- optim(x0,

objective,
gradient,
method = "CG",
control= list(trace = 10))

## Conjugate gradients function minimizer
## Method: Fletcher Reeves
## tolerance used in gradient test=3.63798e-12
## 0 1 104.000000
## parameters -1.00000 2.00000
## ***** i> 1 8 48.945435
## parameters -1.12672 1.93600
## i> 2 10 8.462664
## parameters -1.40325 1.80518
## ***** i> 3 17 6.082506
## parameters -1.37227 1.81568
## i> 4 19 5.571783
## parameters -1.33984 1.82630
## ***** i> 5 26 5.528302
## parameters -1.34368 1.82431
## i> 6 28 5.515486
## parameters -1.34820 1.82145
## **** i< 7 34 5.512028
## parameters -1.34609 1.82084
## i> 8 36 5.502421
## parameters -1.34333 1.81513
## **** i< 9 42 5.499507
## parameters -1.34414 1.81344
## i> 10 44 5.489721
## parameters -1.34270 1.80668

.....

## **** i< 89 362 4.989181
## parameters -1.23248 1.52623
## i> 90 364 4.980618
## parameters -1.23148 1.51989
## **** i< 91 370 4.976431
## parameters -1.22923 1.51935
## i> 92 372 4.967880
## parameters -1.22560 1.51417
## **** i< 93 378 4.963809
## parameters -1.22678 1.51224
## i> 94 380 4.955307
## parameters -1.22581 1.50590
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## **** i< 95 386 4.951062
## parameters -1.22354 1.50538
## i> 96 388 4.942570
## parameters -1.21988 1.50023
## **** i< 97 394 4.938438
## parameters -1.22106 1.49829
## i> 98 396 4.929998
## parameters -1.22012 1.49195
## **** i< 99 402 4.925694
## parameters -1.21784 1.49143
## i> 100 404 4.917261
## parameters -1.21413 1.48631
end_time <- Sys.time()
CG_time <- format(end_time - init_time, digits = 3)

Comparisons
We compare the three routines by optimum value, function value, and run time.
res_DT <- data.frame(Name = c("BFGS", "NM", "CG"),

Objective = c(res_bfgs$value, res_nm$value, res_cg$value),
Convergence = c(res_bfgs$convergence, res_nm$convergence, res_cg$convergence),
X1_opt = c(res_bfgs$par[1], res_nm$par[1], res_cg$par[1]),
X2_opt = c(res_bfgs$par[2], res_nm$par[2], res_cg$par[2]),
Time = c(BFGS_time, NM_time, CG_time))

res_DT

## Name Objective Convergence X1_opt X2_opt Time
## 1 BFGS 3.615234e-18 0 1.0000000 1.0000000 0.003 secs
## 2 NM 4.568377e-07 0 0.9997026 0.9994661 0.002 secs
## 3 CG 4.917261e+00 1 -1.2178392 1.4914286 0.002 secs

We see that BFGS and Nelder-Mead basically converged to the optimum while the Conjugate Gradient
method failed to converge. Since Nelder-Mead is a heuristic optimization algorithm, we see that the optimal
values are further away than BFGS.

Remarks

• Generally, Nelder-Mead and BFGS are used for applied researchers because they support constrained
optimization

• Feeding in the analytically gradient function often will drastically speed up the optimization routine.
Try running the optimizers without the gradient specified. Some routines will compute the numerical
gradient and thus will be slower and be subject to numerical approximation noise

• The choice of the starting value can really help the optimizer along. Try choosing starting values that
are far from the optimal value and see how long the routines will take.

• You can mix optimizers. If you want to run an MLE estimator, you can speed things along by first
running Nelder-Mead. Then take the Nelder-Mead estimates and plug it into BFGS and ask for the
numerical Hessian (so you can compute SE). This will probably be faster than just running BFGS from
the start.

• Lastly, for many complicated models it is often difficult to determine whether you reached a local or
global optima. Ideally your final optimal value should make intuitive sense given the application. If you
have lots of computing resources to spare, you can also run many versions of the optimizer for a grid of
starting point and choose the best optimal point over the set of optimal points.
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Part IV

Dynamic Programming
This section provides an introduction of dynamic programming and a background for the first yearmacroe-
conomics, operations, and marketing courses. Generally, these concepts will be widely used in a structural
economics course. The companion RMarkdown notebook provides an introduction of the computation
aspect by working through the Rust (1987) dynamic discrete choice and optimal renewal problem.
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10 FUNDAMENTALS

10 Fundamentals

Before we get started with dynamic programming, we will cover some fundamentals to review the tool set
needed to solve these types of problems.

10.1 Fixed Points

In mathematical economics, we usually defer the existence of an equilibrium to a fixed point theorem. As
long as we can show a fixed point exists, then we can design an algorithm that converges to the fixed point
in our estimation. There are three main families of fixed point theorems in economics.

1. The metric approach with Banach’s fixed point theorem. Contraction mapping in a metric space
yields a unique fixed point. Convex analysis and linear programming fall here.

2. The order-theoretic approach with Tarski’s fixed point theorem. An isotone mapping in a lattice
contains a nonempty set of fixed points that are itself a lattice. Supermodularity and isotonicity fall
here.

3. The topological approach with Schauder’s fixed point theorem. A continuous mapping on a convex
compact space yields a nonempty, closed set of fixed points. Existence of mixed equilibrium Nash
strategies fall here.

The first approach contains the bulk of applied research. Generally, the first two approaches have been used
computationally. The first uses an convex optimization framework and the second uses a Nash equilibrium
setup in a supermodular game.

In dynamic programming, the fixed point theorem guarantees an existence of an optimal solution given
some conditions. Wewill often leverage the convex optimization framework to solve the dynamic program
computationally.

More formally, a fixed point is a point that maps to itself for a given function 𝑓 . In the simplest
case, 𝑥 ∈ R is a fixed point if continuous function 𝑓 has the property that 𝑓 (𝑥) = 𝑥 . Naturally, further
compositions of function evaluated at 𝑥 yields the fixed point (𝑓 (𝑓 (𝑥)) = 𝑥 ). We generalize this concept
with the following.

Theorem 14. (Brouwer’s fixed-point theorem) Any continuous function 𝑓 mapping a compact, convex set to
itself will have a a point 𝑥 such that 𝑓 (𝑥) = 𝑥 .

There are two classic examples of Brouwer’s Theorem.
• (2D case) Take out a map of the country that you reside in. There will always be a point on the map
that represents the exact place of the map in the country.

• (3D case) Consider stirring a tea in a teacup. No matter how long you stir the tea, there will always
be a point in the tea cup that was at the original spot before you started stirring.

Generally, a nonlinear equation of form 𝑓 (𝑥) = 0 can be rewritten as 𝑔(𝑥) = 𝑥 where 𝑥 is the fixed
point of some function 𝑔(𝑥). We further can solve the for the fixed point using a fixed-point iteration
algorithm. To build intuition, we first consider functions on R.

Theorem 15. Let 𝑔 be a continuous function on [𝑎, 𝑏]. If 𝑔(𝑥) ∈ [𝑎, 𝑏] and for each 𝑥 ∈ [𝑎, 𝑏], then 𝑔 has
a fixed point in [𝑎, 𝑏]. Furthermore, if 𝑔 is differentiable on (𝑎, 𝑏) and there exists a constant 𝑘 < 1 such that
|𝑔′(𝑥) | < 𝑘 , then 𝑔 has a unique fixed point in [𝑎, 𝑏].

90



10.2 Gradient-based Optimization 10 FUNDAMENTALS

Algorithm 3 Fixed point iteration
We let 𝑔 be a continuous function on [𝑎, 𝑏]. The following algorithm produces a value 𝑥∗ ∈ (𝑎, 𝑏) that is a
solution to 𝑔(𝑥) = 𝑥 .

initialization: Guess 𝑥0 ∈ [𝑎, 𝑏]. Choose 𝐾 ∈ N and some tolerance level 𝑡𝑜𝑙
for 𝑘 = 0, 1, . . . , 𝐾 :

1. 𝑥𝑘+1 = 𝑔(𝑥𝑘 )
2. if ( |𝑥𝑘+1 − 𝑥𝑘 | < 𝑡𝑜𝑙) then

(a) break the for loop iteration
(b) end

3. end
define 𝑥∗ = 𝑥𝑘+1
return 𝑥∗

Exercise 8. Why do we need |𝑔′(𝑥) | < 𝑘 for 𝑘 < 1? Appeal to Taylor’s Theorem and note that for
𝑒𝑘 = 𝑥𝑘 − 𝑥∗ we have 𝑒𝑘+1 ≈ 𝑔′(𝑥∗)𝑒𝑘 . What happens to the algorithm’s performance as |𝑔′(𝑥) | → 1?

Theorem 16. We let 𝑔 be a continuous function on [𝑎, 𝑏]. Then if 𝑔(𝑥) ∈ [𝑎, 𝑏] for each 𝑥 ∈ [𝑎, 𝑏] and there
exists some constant 𝑘 < 1 such that |𝑔′(𝑥) | ≤ 𝑘,∀𝑥 ∈ (𝑎, 𝑏), then the sequence {𝑥𝑘 }∞𝑘=0 produced from the
algorithm converges to the unique fixed point 𝑥∗ ∈ [𝑎, 𝑏] for any initial guess 𝑥0 ∈ [𝑎, 𝑏].

Example 24. We want to solve cos(𝑥) − 𝑥 = 0. We can to compute the fixed point of 𝑔(𝑥) = cos(𝑥) in
the interval [0, 1]. We know cos(𝑥) : [0, 1] ↦→ [0, 1], |𝑐𝑜𝑠 (𝑋 ) | ≤ 1, and cos(𝑥) is continuous so 𝑔(𝑥) has a
fixed point in [0, 1]. Further |𝑔′(𝑥) | = | − sin(𝑥) | ≤ 1 on [0, 1] so the fixed point is unique. Then, we can
apply the fixed point iteration algorithm for some initial point 𝑥0 ∈ [0, 1] to achieve the fixed point.

Exercise 9. Code the previous example up. Show that number of time lengths it takes to converge to the
fixed point changes with the starting value. For example, starting at the fixed point itself should lead the
algorithm to terminate after one step.

10.2 Gradient-based Optimization

We consider ways to minimize some continuous loss function 𝐽 : R𝑑 → R whose gradient is well defined.
These gradient based methods are often used in complicated optimization problems that occur in dynamic
programming and in reinforcement learning. We first define the gradient flow equation

𝑑𝑢

𝑑𝑡
= −𝐷𝐽 (𝑢), 𝑢 (0) = 𝑢0

where 𝑢 (𝑡) is a function of time period 𝑡 .
We know that

𝑑

𝑑𝑡
(𝐽 (𝑢)) = ⟨𝐷𝐽 (𝑢), 𝑑𝑢

𝑑𝑡
⟩ = −|𝐷𝐽 (𝑢) |2.

Since the time derivative of 𝑢 (𝑡) gives the tangent to the trajectory, moving in the negative gradient of
𝐽 (𝑢) will lead 𝐽 (𝑢 (𝑡)) to be non-increasing as a function of time. Further 𝐽 (𝑢 (𝑡)) will decrease until 𝑢 is at
a non-critical point of 𝐽 (·), at which the gradient is 0.
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To turn the gradient flow into an optimization algorithm, we can discretize it by using Euler’s method
with a variable time-step 𝛼𝑙 to obtain gradient descent or

𝑢𝑙+1 = 𝑢𝑙 − 𝛼𝑙𝐷𝐽 (𝑢𝑙 )

where 𝑙 represents the discrete time interval. Note that our choice of the variable time-step 𝛼𝑙 can speed
up or slow down the convergence to the critical point. Ideally, we want to choose 𝛼𝑙 such that we jump as
close as possible to the critical point in one step.

Lastly, we can consider stochastic gradient descent. We now let

𝐽 (𝑢) =
∫
𝐵

𝐹 (𝑢, 𝑧)[ (𝑧)𝑑𝑧

where 𝐵 ⊆ R𝑞 and [ is the PDF of a random variable 𝑧 ∈ 𝐵. Then, the goal is to determine

𝑢∗ = arg min
𝑢∈R𝑑

𝐽 (𝑢).

Stochastic gradient descent tries to solve this problem when explicit evaluations of 𝐽 (𝑢) and 𝐷𝐽 (𝑢) are
not possible due to its integration over 𝐵. However, we assume 𝐷𝑢𝐹 (𝑢, 𝑧) can be evaluated. Then, the
algorithm becomes

𝑢𝑙+1 = 𝑢𝑙 − 𝛼𝑙𝐷𝑢𝐹 (𝑢𝑙 , 𝑧𝑙 )

where 𝑧𝑙 ∈ 𝐵 is drawn i.i.d. from the PDF [. Recently, stochastic gradient descent methods have been
used for problems where standard gradient descent methods are computationally feasible. The former
is computationally less taxing (and requires less memory) and its randomness allows escaping of local
minima and faster traversing of saddle point neighborhoods.

Exercise 10. Consider a strictly convex objective function. Will gradient descent and stochastic gradient
descentmethods always achieve the globalminima on a convex set? Assuming no computational feasibility
issues, will stochastic gradient descent be better performing than gradient descent here?

11 Introduction

To build an intuition for dynamic programming, we will walk through different set ups to the classic cake
eating problem. Suppose after a long Stokey lecture, you acquire a whole cake of size𝑊1 from the Booth
Cafe (or the Divinity School cafe or Plein Air) to stress eat while solving her latest problem set. For each
time period 𝑡 = 1, . . . ,𝑇 , you can eat some of the cake and will save the rest, and the problem set is due at
time 𝑇 + 1. You want to finish eating the whole cake by the time you hand in the problem set. After all,
you cannot stress eat without the stress!

We let 𝑐𝑡 be the consumption in period 𝑡 and𝑢 (𝑐𝑡 ) be theflowutility from 𝑐𝑡 . Note that preferences are
stationary (𝑢 (𝑐𝑡 ) is not indexed by time), 𝑢 (·) is real-valued differentiable, strictly increasing, and strictly
concave, and that lim𝑐→0𝑢

′(𝑐) → ∞ (infinite marginal utility at no consumption). Then, your lifetime
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utility in this period is
𝑇∑︁
𝑡−1

𝛽 (𝑡−1)𝑢 (𝑐𝑡 )

where 0 ≤ 𝛽 ≤ 1 is the discount factor. We further assume that the cake neither depreciates nor grows
over time. Then, the cake’s evolution, or transition formula, is

𝑊𝑡+1 =𝑊𝑡 − 𝑐𝑡 , ∀𝑡 = 1, . . . ,𝑇 . (1)

We want to find our optimal path of consumption in this period {𝑐∗𝑡 }𝑇𝑡=1.

11.1 Brute-force Approach

We can brute force the finite dimensional optimization problem by taking the sequence problem ap-
proach. We have the program

max
{𝑐𝑡 }𝑇𝑡=1,{𝑊𝑡 }𝑇+1

𝑡=2

𝑇∑︁
𝑡=1

𝛽 (𝑡−1)𝑢 (𝑐𝑡 ) (2)

subject to the cake transition formula from Equation 1. We further assume that there are non-negativity
constraints given by 𝑐𝑡 ≥ 0 and𝑊𝑡 ≥ 0 and𝑊1 is the size of the initial cake and is given. Here, we can
think of𝑊1 as a boundary condition of our problem.

We can collapse the transitions equations to get the flow constraint by writing

𝑊𝑇+1 =𝑊𝑇 − 𝑐𝑇 = −
𝑇∑︁
𝑡=1

𝑐𝑡 +𝑊1 (3)

and the non-negativity constraints can be written as 𝑐𝑡 ≥ 0,∀𝑡 ∈ {1, . . . ,𝑇 } and 𝑊𝑇+1 ≥ 0 (resource
constraint). We see that in our program, we have a concave and continuous objective function and a
compact constraint set and as a result we will have a solution to our program. Setting _ as the Lagrange
Multiplier for the flow constraint (𝑊1−

∑𝑇
𝑡=1 𝑐𝑡−𝑊𝑇+1 = 0) and𝜙 as themultiplier on the resource constraint

(𝑊𝑇+1 ≥ 0), we have

L =

( 𝑇∑︁
𝑡=1

𝛽 (𝑡−1)𝑢 (𝑐𝑡 )
)
+ _

(
𝑊1 −𝑊𝑇+1 −

𝑇∑︁
𝑡=1

𝑐𝑡

)
+ 𝜙

(
𝑊𝑇+1

)
and the FOC are

𝛽𝑡−1𝑢′(𝑐𝑡 ) =_
_ =𝜙.

Since the MU of consumption at 𝑐𝑡 = 0 is infinity, we can ignore the non-negativity constraint on 𝑐𝑡 . Since
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the FOC to 𝑐𝑡 holds for all 𝑡 , we see that

𝛽𝑡−1𝑢′(𝑐𝑡 ) = _
𝛽𝑡𝑢′(𝑐𝑡+1) = _

where we moved the time index from 𝑡 to 𝑡 + 1 to get the second equation. Equating the two equations,
we attain the Euler equation,

𝑢′(𝑐𝑡 ) = 𝛽𝑢′(𝑐𝑡+1) (4)

which links consumption across any two period. Note that this is a necessary condition for optimality for
any 𝑡 and if it does not hold then we can always do better by adjusting our choice of 𝑐𝑡 and 𝑐𝑡+1. However,
this is condition is not a sufficient condition as deviations that occur more than one period away will not
covered by a single Euler equation. We can combine the Euler equations to cover these by

𝑢′(𝑐𝑡 ) = 𝛽2𝑢′(𝑐𝑡+2)

and so on. Thus, for a finite horizon problem, the Euler equation will rule out deviations from a candidate
solution that satisfies the equations. But, this is still not a sufficient condition as a candidate solution can
have𝑊𝑇 > 𝑐𝑇 so there is cake left on the table that is never eaten and thus the solution is not efficient.
Hence, for an efficient solution, the non-negativity constraint must bind for𝑊𝑇+1 (or𝑊𝑇+1 = 0). With the
initial condition (𝑊1 is given), the terminal condition (𝑊𝑇+1 = 0), and the set of (𝑇 − 1) Euler equations
the optimal path of consumption will be pinned down.

We denote a solution to problem as𝑉𝑇 (𝑊1) where𝑇 is the horizon of the problem and𝑊1 is the initial
size of the cake. We further define 𝑉𝑇 (𝑊1) as the value function. Note that here an small increase in the
size of the cake will lead the lifetime utility to increase of the marginal utility, 𝑢′(𝑐𝑡 ), in any period 𝑡 , or

𝑉 ′
𝑇 (𝑊1) = _ = 𝛽𝑡−1𝑢′(𝑐𝑡 ), ∀𝑡 = {1, . . . ,𝑇 }.

The parallel here is a income shock to a consumer that can choose to allocate it across many discrete goods.

11.2 Dynamic Programming Approach

Before we introduce the dynamic programming approach, we add a period 0 to the problem and set the
initial cake size to𝑊0. The dynamic programming approach rewrites the finite horizon problem as two-
period problem by rewriting the objective function. We now consider the program,

max
𝑐0

𝑢 (𝑐0) + 𝛽𝑉𝑇 (𝑊1) (5)

where𝑊1 =𝑊0 − 𝑐0 and𝑊0 is given.
Note that we now choose the level of consumption at time 0, or 𝑐0, and cake size at time period 1, or

𝑊1. Then with these two initial values, the value of the problem for the rest of the time periods is given by
𝑉𝑇 (𝑊1). In the dynamic programming approach, the 𝑉𝑇 (𝑊1) function fully summarizes optimal behavior
from period 1 to period 𝑇 . Note that it does not matter how the cake is consumed after period 0, as long
as it yields a indirect utility level of 𝑉𝑇 (𝑊1). We denote this as the principle of optimality.
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Assuming that 𝑉𝑇 (𝑊1) is differentiable, we see that the FOC is

𝑢′(𝑐0) = 𝛽𝑉 ′
𝑇 (𝑊1)

which says that the MU of consumption is related to the discounted derivative of the value function. From
our results from the brute force approach, we know

𝑉 ′
𝑇 (𝑊1) = 𝑢′(𝑐1) = 𝛽𝑡𝑢′(𝑐𝑡+1), ∀𝑡 = 1, . . . ,𝑇 − 1

and combining the two results, we get

𝑢′(𝑐𝑡 ) = 𝛽𝑢′(𝑐𝑡+1), ∀𝑡 = 1, . . . ,𝑇 − 1

which is our necessary condition for an optimal solution. Since our dynamic programming approach
nests the Euler equations, the two approaches will yield the same results. Generally, when 𝑢 (𝑐) is strictly
concave, the two solutions will be identical in the two different approaches.

Note that we solved the problem assuming that we know 𝑉𝑇 (𝑊1). We can solve for it recursively by
first solving the single period problem to get 𝑉1(𝑊1). Then, we can solve Equation 5 to construct 𝑉2(𝑊1),
and so on. We show this in the following example.

Example 25. Recall that 𝑇 represents the terminal period. Suppose 𝑢 (𝑐) = ln(𝑐) and 𝑇 = 1. Then
𝑉1(𝑊1) = ln(𝑊1).

Then for 𝑇 = 2, the FOC from Equation 2 yields

1
𝑐1

= 𝛽
1
𝑐2

with the resource constraint
𝑊1 = 𝑐1 + 𝑐2.

Together they give us,

𝑐1 =
𝑊1

1 + 𝛽 , 𝑐2 =
𝛽𝑊1

1 + 𝛽
and we can solve for the value function of the two-period problem

𝑉2(𝑊1) = ln(𝑐1) + 𝛽 ln(𝑐2) = ℵ2 + ℶ2 ln(𝑊1) (6)

where
ℵ2 = ln( 1

1 + 𝛽 ) + 𝛽 ln( 𝛽

1 + 𝛽 ), ℶ2 = 1 + 𝛽.

Note that Equation 6 does not contain the max operator because we are evaluating it at its optimal values.
We now solve out the𝑇 = 3 value function,𝑉3(𝑊1) = max𝑊2 ln(𝑊1 −𝑊2) + 𝛽𝑉2(𝑊2), where the choice

variable the size of the cake in the second period. We want to find the optimal levels of consumption 𝑐𝑡
for the three periods as well as the form for our value function. Taking the first order condition of𝑉3(𝑊1)
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to𝑊2, we get
1

𝑊1 −𝑊2
= 𝛽𝑉 ′

2 (𝑊2)

and we have resource constraints

𝑊1 = 𝑐1 + 𝑐2 + 𝑐3

𝑊2 = 𝑐2 + 𝑐3

which tells us that 𝑐1 =𝑊1 −𝑊2. Plugging this to the FOC, we get

1
𝑐1

= 𝛽𝑉 ′
2 (𝑊2) .

Recall that we had 𝑉2(𝑊1) = ℵ2 + ℶ2 ln(𝑊1) for the two period problem. We then replace𝑊1 with𝑊2 for
this 𝑇 = 2 value function. Now 𝑉2(𝑊2) says we have an initial cake size𝑊2 and we have two periods to
eat it. Note that the subscript to the value function is for how many time periods away from the terminal
period we are at and subscript to the cake size is the current time period.

Since we have that 𝑉2(𝑊2) = ℵ2 + ℶ2 ln(𝑊2), so the partial derivative to𝑊2 is

𝑉 ′
2 (𝑊2) = ℶ2

1
𝑊2

= (1 + 𝛽) 1
𝑊2

= (1 + 𝛽) 1
(1 + 𝛽)𝑐2

=
1
𝑐2

where we plugged in the solution to the 𝑇 = 2 problem with the time periods shifted up by one (𝑐2 =
𝑊2
1+𝛽

and 𝑐3 =
𝛽𝑊2
1+𝛽 ). Then, the FOC becomes

1
𝑐1

= 𝛽𝑉 ′
2 (𝑊2) = 𝛽

1
𝑐2
.

From the FOC of the 𝑇 = 2 problem, we can shift the time index by one (as we did before when we used
our 𝑇 = 2 solution) and attain

1
𝑐2

= 𝛽
1
𝑐3
.

Lastly, we recall the resource constraint of the problem,

𝑐1 + 𝑐2 + 𝑐3 =𝑊1.

The two FOC equations (or Euler equations) with the resource constraint gives us three equations for our
problem with three unknowns (𝑐1, 𝑐2, 𝑐3) that we can solve as a function of𝑊1.

First, we see that the first two FOCs yield 𝑐2 = 𝛽𝑐1, 𝑐3 = 𝛽𝑐2 respectively, which combined yields
𝑐3 = 𝛽

2𝑐1. Then plugging these equations into the resource constraint, we see that

𝑐1 + 𝛽𝑐1 + 𝛽2𝑐1 =𝑊1

𝑐1(1 + 𝛽 + 𝛽2) =𝑊1

𝑐1 =
𝑊1

(1 + 𝛽 + 𝛽2) .
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Plugging in our solved optimal value for 𝑐1 into the two FOCs, we get

𝑐2 = 𝛽𝑐1 =
𝛽

1 + 𝛽 + 𝛽2𝑊1

𝑐3 = 𝛽
2𝑐1 =

𝛽2

1 + 𝛽 + 𝛽2𝑊1.

Now, we just need to find the form of the value function. We guess that for parameters (or constants
values) ℵ3 and ℶ3, the value function takes form

𝑉3(𝑊1) = ℵ3 + ℶ3 ln(𝑊1) = ln(𝑊1 −𝑊2) + 𝛽𝑉2(𝑊2)

where we know 𝑉2(𝑊2) = ln(𝑐2) + 𝛽 ln(𝑐3) = ℵ2 + ℶ2 ln(𝑊2) from before. Then, we have that

𝑉3(𝑊1) = ℵ3 + ℶ3 ln(𝑊1) = ln(𝑐1) + 𝛽 ln(𝑐2) + 𝛽2 ln(𝑐3)

and plugging in our optimal values for 𝑐1, 𝑐2, 𝑐3 we get

ℵ3 + ℶ3 ln(𝑊1) = ln
( 𝑊1

1 + 𝛽 + 𝛽2
)
+ 𝛽 ln

( 𝛽𝑊1

1 + 𝛽 + 𝛽2
)
+ 𝛽2 ln

( 𝛽2𝑊1

1 + 𝛽 + 𝛽2
)

= ln(𝑊1) + 𝛽 ln(𝑊1) + 𝛽2 ln(𝑊1)

+ ln
( 1
1 + 𝛽 + 𝛽2

)
+ 𝛽 ln

( 𝛽

1 + 𝛽 + 𝛽2
)
+ 𝛽2 ln

( 𝛽2

1 + 𝛽 + 𝛽2
)

Equating the ln(𝑊1) terms, we have that

ℶ3 = 1 + 𝛽 + 𝛽2

and equating the terms without ln(𝑊1), we have that

ℵ3 = ln
( 1
1 + 𝛽 + 𝛽2

)
+ 𝛽 ln

( 𝛽

1 + 𝛽 + 𝛽2
)
+ 𝛽2 ln

( 𝛽2

1 + 𝛽 + 𝛽2
)
.

Thus, our solution to the problem is the optimal levels of consumption 𝑐1, 𝑐2, 𝑐3 and the value function
parameters ℵ3,ℶ3 given our specified functional form of the value function.

Exercise 11. Verify our solution to the 𝑇 = 3 value function solution using the brute force approach.

Exercise 12. Do you see a pattern in the solutions to optimal levels of consumption {𝑐∗𝑡 }𝑇𝑡=1 and value
function parameters as 𝑇 increases from the 𝑇 = 2 and 𝑇 = 3 solutions? Make a guess for the solution to
the 𝑇 = 4 problem and validate it by solving it out using the value function approach.
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11.3 Dynamic Programming Extensions

11.3.1 Infinite Horizon Problem

We now extend our finite horizon problem to an infinite horizon problem. The program becomes

max
{𝑐𝑡 }∞𝑡=1{𝑊𝑡 }∞𝑡=1

∞∑︁
𝑡=1

𝛽𝑡𝑢 (𝑐𝑡 )

with flow equation
𝑊𝑡+1 =𝑊𝑡 − 𝑐𝑡 , ∀𝑡 = 1, 2, . . . .

For this type of problem, we construct the value function as

𝑉 (𝑊 ) = max
𝑐∈[0,𝑊 ]

𝑢 (𝑐) + 𝛽𝑉 (𝑊 − 𝑐)

for all𝑊 . Here, we see that 𝑢 (𝑐) is the utility of consuming 𝑐 units in the current period and 𝑉 (𝑊 ) is the
value function of the infinite horizon problem starting at𝑊 . Thus, 𝑉 (𝑊 − 𝑐) represents the subsequent
value function given that 𝑐 was consumed today. We denote the next time periodwith primes, so𝑊 ′ =𝑊−𝑐
is the next period’s cake size.

We denote the state variable as the size of the cake (W), which is given to us at the beginning of each
problem and in this example is the initial cake size. The state variable summarizes all of the information
from the past that is needed for the forward-looking program. The control variable is denoted as the
variable chosen to solve the program, and here it is the level of consumption in each period, or 𝑐 , and it
lies on a compact set. The transition equation dictates next period’s state variable given today’s state
variable and control variable,

𝑊 ′ =𝑊 − 𝑐.

We thus can reformulate the problem using the transition equation so we choose tomorrow’s state
variable instead of today’s consumption level,

𝑉 (𝑊 ) = max
𝑊 ′∈[0,𝑊 ]

𝑢 (𝑊 −𝑊 ′) + 𝛽𝑉 (𝑊 ′) (7)

for all𝑊 . Equation 7 is a functional equation orBellman Equation, where the unknown in the Bellman
equation is the value function itself. Since we do not have terminal period to backward induct and derive
the value function, we must rely on a fixed point equation or restriction since𝑉 (𝑊 ) appears on both sides
of Equation 7.

Further, note that there’s no time indicator in the Bellman Equation in Equation 7, so we can repre-
sent all our relations invariant of time. This is the stationarity property of the infinite horizon Bellman
Equation. Stationarity is needed for us to leverage a fixed point theorem to show the existence of a value
function that solves the program.

We first assume that such a solution exists and delay the discussion about its existence for later. The
FOC of Equation 7 is

𝑢′(𝑐) = 𝛽𝑉 ′(𝑊 ′).
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Further assuming the value function is differentiable, we see that𝑉 ′(𝑊 ) = 𝑢′(𝑐) as from before. Since this
holds for all𝑊 , it must hold in the subsequent time period, so

𝑉 ′(𝑊 ′) = 𝑢′(𝑐′)

and we can combine the equations to obtain

𝑢′(𝑐) = 𝛽𝑢′(𝑐′)

which looks like the Euler equation from before (Equation 4). Just like we had before, this Euler equation
is necessary condition for an optimal solution for all𝑊 .

The relation from the level of consumption today and the next period cake size (the control variables
in the two different formulations) to the size of the cake today (the state variable) is given by the policy
function,

𝑐 = 𝜙 (𝑊 )
𝑊 ′ = 𝜓 (𝑊 ) ≡𝑊 − 𝜙 (𝑊 ) .

Substituting these values in to the Euler equation, we attain

𝑢′(𝜙 (𝑊 )) = 𝛽𝑢′(𝜙 (𝑊 − 𝜙 (𝑊 ))), ∀𝑊 .

Policy functions are often used in applied work because they map the state variables to actions. When
either are observable to a researcher, they can be used to estimate the parameters of a model.

Example 26. (Guess and verify) We solve the infinite horizon problem while supposing 𝑢 (𝑐) = ln(𝑐).
From the solution to the finite horizon problem, we form the ansatz

𝑉 (𝑊 ) = 𝐴 + 𝐵 ln(𝑊 ), ∀𝑊

and we have reduced the dimensionality of the problem to just two parameters, 𝐴 and 𝐵. We then try to
find values of 𝐴 and 𝐵 that satisfy the functional equation. Plugging in our ansatz, we obtain

𝐴 + 𝐵 ln(𝑊 ) = max
𝑊 ′

ln(𝑊 −𝑊 ′) + 𝛽 (𝐴 + 𝐵 ln(𝑊 ′)), ∀𝑊 . (8)

Solving for the FOC, we attain

𝑊 ′ = 𝜓 (𝑊 ) = 𝛽𝐵

1 + 𝛽𝐵𝑊 ,

which we can plug into Equation 8 to get

𝐴 + 𝐵 ln(𝑊 ) = ln( 𝑊

1 + 𝛽𝐵 ) + 𝛽
(
𝐴 + 𝐵 ln( 𝛽𝐵𝑊

1 + 𝛽𝐵 )
)
, ∀𝑊 .
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Equating the terms with ln(𝑊 ) and since the function equation holds for all𝑊 , we attain

𝐵 =
1

1 − 𝛽 .

Similarly, we can use the equation to solve for𝐴 and then our ansatz is a solution to the function equation
with our solved values of (𝐴, 𝐵). Given our solution and from 𝑢′(𝑐) = 𝑉 ′(𝑊 ) which we got from the
differentiability of the value function, we see that 𝑐 = (1 − 𝛽)𝑊 and𝑊 ′ = 𝛽𝑊 (which in turn leads to
𝑐 =

(1−𝛽 )
𝛽
𝑊 ′) so the optimal policy tells us to save a constant fraction of the cake and eat the remaining

portion each period.

Exercise 13. Solve out the term for𝐴 that makes our ansatz satisfy the functional equation in the previous
example’s equations.

11.3.2 Uncertainty

We can add uncertainty to the problem by adding taste shocks. Adding uncertainty to the dynamic pro-
gramming framework is generally straightforward if the shocks take values in a finite or countable set. In
our cake eating example, we suppose the consumption utility is now

𝜖𝑢 (𝑐)

where 𝜖 is a random variable and𝑢 (𝑐) is a strictly increasing and strictly concave function. We still assume
the initial cake size is𝑊 .

With uncertainty, we need to be careful formulating the problem as we need to determine if the agent
can observe the taste shock when making decisions at different time periods. In our example, the agent
knows the current taste shock value for contemporary decisions but the agent needs to form expectations
of future values of 𝜖 .

We let the taste shocks take only two possible values 𝜖 ∈ {𝜖ℎ, 𝜖𝑙 } where 𝜖ℎ > 𝜖𝑙 > 0. We assume the
taste shock follows a first-order Markov process, so the probability of getting a specific 𝜖 in the current
period only depends on the value of 𝜖 in the previous period. We define 𝜋𝑖 𝑗 to be the probability that
the value of 𝜖 goes from state 𝑖 in the current period to state 𝑗 in the next period. Then, in our example
𝜋𝑙ℎ ≡ 𝑃𝑟 (𝜖′ = 𝜖ℎ |𝜖 = 𝜖𝑙 ) where 𝜖′ is the next period value of 𝜖 . We can construct Π, which is a 2× 2 matrix
of 𝜋𝑖 𝑗 , and is denoted as the transition matrix.

We then rewrite the Bellman Equation as

𝑉 (𝑊,𝜖) = max
𝑊 ′

𝜖𝑢 (𝑊 −𝑊 ′) + 𝛽𝐸𝜖 ′ |𝜖 [𝑉 (𝑊 ′, 𝜖′)], ∀𝑊,𝜖

where𝑊 ′ =𝑊 − 𝑐 is defined as from before. The conditional expectation 𝐸𝜖 ′ |𝜖 [𝑉 (𝑊 ′, 𝜖′)] is given over Π
and can be computed. Then, our FOC is

𝜖𝑢′(𝑊 −𝑊 ′) = 𝛽𝐸𝜖 ′ |𝜖 [𝑉1(𝑊 ′, 𝜖′)] ∀𝑊,𝜖

where𝑉1(𝑊 ′, 𝜖′) represents the partial derivative of𝑉 (𝑊 ′, 𝜖′) to𝑊 ′ or 𝜕𝑉 (𝑊 ′,𝜖 ′ )
𝜕𝑊 ′ .We can use the functional
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equation to solve for the marginal value of the cake 𝑉1(𝑊 ′, 𝜖′), and we attain

𝜖𝑢′(𝑊 −𝑊 ′) = 𝛽𝐸𝜖 ′ |𝜖 [𝜖′𝑢′(𝑊 ′ −𝑊 ′′)] (9)

which is the stochastic Euler equation for our problem. The optimal policy function is then

𝑊 ′ = 𝜓 (𝑊,𝜖)

which lets us rewrite the Equation 9 as

𝜖𝑢′(𝑊 −𝜓 (𝑊,𝜖)) = 𝛽𝐸𝜖 ′ |𝜖 [𝜖𝑢′(𝜓 (𝑊,𝜖) −𝜓 (𝜓 (𝑊,𝜖), 𝜖′)] .

Note that since 𝜖′ and 𝑐′ depend on the realized value of 𝜖 , we cannot split the expectation on the right
hand side of Equation 9 into two pieces.

11.3.3 Discrete Choice

We can also analyze a discrete choice problem in this scenario. Now suppose you do not like eating every
period and decide to eat the whole cake in one time period. We also allow the cake the grow or depreciate
at rate 𝜌 .

Under this framework, the problem becomes a dynamic, stochastic discrete choice problem and is under
the class of problems called optimal stopping problems. Other common optimal stopping problems are
when deciding when workers stop working, students to stop learning and go to the workforce, and when
durable goods are adopted by consumers.

We let 𝑉 𝐸 (𝑊,𝜖) and 𝑉 𝑁 (𝑊,𝜖) be the values of eating size 𝑊 cake now (𝐸) or waiting (𝑁 ) given
the current taste shock 𝜖 ∈ {𝜖ℎ, 𝜖𝑙 }. 𝑉 𝐸 (𝑊,𝜖) and 𝑉 𝑁 (𝑊,𝜖) are also called the choice-specific value
functions. Then, we have that

𝑉 𝐸 (𝑊,𝜖) = 𝜖𝑢 (𝑊 )
𝑉 𝑁 (𝑊,𝜖) = 𝛽𝐸𝜖 ′ |𝜖 [𝑉 (𝜌𝑊 , 𝜖′)]

where
𝑉 (𝑊,𝜖) = max{𝑉 𝐸 (𝑊,𝜖),𝑉 𝑁 (𝑊,𝜖)}, ∀𝑊,𝜖.

Here 𝜖𝑢 (𝑊 ) is the direct flow utility from eating the whole cake. Once the cake has been eaten, then the
problem terminates, so 𝑉 𝐸 (𝑊,𝜖) is just a one-period return. Alternatively, if you wait, then there is no
current consumption utility and the next period cake is of size 𝜌𝑊 . Since tastes are stochastic, the you
need to take expectations of the future taste shocks 𝜖′. Similarly, you face the same problem of choosing
to wait or consume the next period so the value of having the cake is 𝑉 (𝑊,𝜖) which it the value from
maximizing over choosing waiting or eating. The future is discounted by 𝛽 and the cake will grow or
deteriorate at rate 𝜌 .

However, if 𝜌 ≤ 1, then the cake does not grow and the you will always consume when you get a
realization of 𝜖ℎ . Thus, 𝑉 (𝑊,𝜖ℎ) = 𝑉 𝐸 (𝑊,𝜖ℎ) = 𝜖ℎ𝑢 (𝑊 ),∀𝑊 .

In contrast, in the low state, 𝜖𝑙 , then if 𝛽 and 𝜌 are sufficiently close to 1, then there is not much cost
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incurred from delaying the decision to consumer. If 𝜋𝑙ℎ is also close to 1, then it is likely the next period
will have a draw of 𝜖ℎ . Then, it is not optimal to eat the cake in the state (𝑊,𝜖𝑙 ) and you would choose to
delay the choice to the next state.

11.4 General Formulation

Now that we have built intuition from the cake-eating problem, we will generalize the dynamic program-
ming approach.

11.4.1 Non-stochastic Case

We first consider an infinite horizon problem where the agent has a payoff function in period 𝑡 that is
denoted as �̃� (𝑠𝑡 , 𝑐𝑡 ). Here 𝑠𝑡 is the state vector and 𝑐𝑡 is the control vector. These vectors are just the
multivariate parallel to their single dimensional variables in the cake-eating example. The state vector
next period is given by the control and state vectors this period and the transition equation

𝑠𝑡+1 = 𝜏 (𝑠𝑡 , 𝑐𝑡 ) .

Exercise 14. Since the next period’s state vector depends on the current period state vector, does this rule
out dependence of the past (i.e. variables from two periods ago)? If not, how can we include them in our
general framework?

The state vector is pinned down by preferences and the transition equation, and the researcher can
choose different representations of the control variables. We let 𝑐 ∈ 𝐶 and 𝑠 ∈ 𝑆 , and sometimes the
allowable control variables are dependent on the state or 𝐶 (𝑠). We further assume the payoff �̃� (𝑠, 𝑐) is
bounded for (𝑠, 𝑐) ∈ 𝑆 × 𝐶 . Note that neither the payoff nor the transition equation explicitly depend
on time 𝑡 . While the problem is dynamic, for a given state, the optimal choice of the agent will be same
regardless of when she decides to optimize. The means the optimal choice is not related to a specific time 𝑡 .
Stationarity thus lets us solve the infinite horizon problem by removing time 𝑡 subscripts from the problem.

Exercise 15. Can we use utility function that explicitly depend on time, like𝑢 (𝑐𝑡 ) = 𝑐𝑡 −𝑡 , in this dynamic
programming setup?

Assuming a discount rate 0 < 𝛽 < 1, the agent’s payoffs over the infinite horizon are

∞∑︁
𝑡=0

𝛽𝑡 �̃� (𝑠𝑡 , 𝑐𝑡 ) . (10)

The dynamic programming approach would set up the value function

𝑉 (𝑠) = max
𝑐∈𝐶 (𝑠 )

�̃� (𝑠, 𝑐) + 𝛽𝑉 (𝑠′), ∀𝑠 ∈ 𝑆 (11)

where 𝑠′ = 𝜏 (𝑠, 𝑐). Next period variables are once again denoted by a prime. Following Stokey and Lucas
(1989), we can reformulate the problem more compactly as

𝑉 (𝑠) = max
𝑠′∈Γ (𝑠 )

𝜎 (𝑠, 𝑠′) + 𝛽𝑉 (𝑠′), ∀𝑠 ∈ 𝑆 (12)
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and we assume 𝑆 in is a convex subset in R𝑘 .
The policy function is denoted as 𝑠′ = 𝜙 (𝑠), and sincewe only have data on people’s action and not their

utility, we need the policy function to estimate our model. However, to get the policy function, we need to
first solve Equation 12 for the value function. Note that payoffs and transition equations are specified by
the researcher a priori as primitive objects and the value function is derived as a solution to Equation 12.

We focus on a set of sufficient conditions for our generalized problem. See Stokey and Lucas (1989)
and Bertsekas (1976) for additional theorems under different assumptions on the payoff and transition
functions.

Theorem 17. Assume 𝜎 (𝑠, 𝑠′) is real-valued, continuous, bounded, 0 < 𝛽 < 1, and the constraint set Γ(𝑠)
is non-empty, compacted-valued, and continuous. Then there exists an unique value function 𝑉 (𝑠) that is a
solution to Equation 12.

Proof. See Theorem 4.6 in Stokey and Lucas (1989). □

In our sketch of the proof, we first denote operator 𝑇 as

𝑇 (V)(𝑠) = max
𝑠′∈Γ (𝑠 )

𝜎 (𝑠, 𝑠′) + 𝛽V(𝑠′), ∀𝑠 ∈ 𝑆.

The mapping takes a guess of the value function and produces another value function 𝑇 (V)(𝑠). Thus,
for any 𝑉 (𝑠) such that 𝑉 (𝑠) = 𝑇 (𝑉 ) (𝑠) will be a solution to Equation 12. We then can just find the fixed
points of 𝑇 (V) to determine the solution to our problem.

The fixed point arguments need that𝑇 (V) satisfies the monotonicity and discounting conditions from
Blackwell (1965). Monotonicity means that forV(𝑠) ≥ 𝑄 (𝑠),∀𝑠 ∈ 𝑆 , then 𝑇 (V)(𝑠) ≥ 𝑇 (𝑄) (𝑠),∀𝑠 ∈ 𝑆 .

Exercise 16. Show how monotonicity is implied by the maximization problem.

Discounting implies that adding a constant toV will lead𝑇 (V) to increase by less than that constant.
Then for some constant 𝑘 , we have that 𝑇 (V + 𝑘) (𝑠) ≤ 𝑇 (V)(𝑠) + 𝛽𝑘,∀𝑠 ∈ 𝑆 and for 𝛽 ∈ [0, 1). Since
we assume the discount factor is less than 1 in the dynamic programming set up, this property holds by
construction.

Since 𝑇 (V) is a contraction, we can use the contraction mapping theorem. The theorem tells us
there is (1) a unique fixed point and (2) that the fixed point can be reached by an iterative process with an
arbitrary starting position in the domain of the problem. We have already seen the first property in the
theorem above.

The second property is used to find a solution to Equation 12. Let 𝑉0(𝑠),∀𝑠 ∈ 𝑆 be an initial guess to
the solution. Then, we can construct 𝑉1 = 𝑇 (𝑉0). If 𝑉1 = 𝑉0,∀𝑠 ∈ 𝑆 , then we are at a solution. If not, we
can keep iterating (𝑉2 = 𝑇 (𝑉1) and so on), until 𝑇 (𝑉 ) = 𝑉 . Since 𝑇 (𝑉 ) is a contraction, we will eventually
converge, and this iterative process is called value function iteration.

We will now see that the value function that is a solution to Equation 12 can inherit some properties
of the problem’s primitives.

Theorem 18. Assume that 𝜎 (𝑠, 𝑠′) is real-valued, continuous, concave, bounded, 0 < 𝛽 < 1, 𝑆 is a convex
subset of R𝑘 , and the constraint set Γ(𝑠) is non-empty, compacted-valued, convex, and continuous. Then a
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unique solution to Equation 12 is strictly concave. Additionally, the policy function 𝜙 (𝑠) is a continuous,
single-valued function.

Proof. See Theorem 4.8 in Stokey and Lucas (1989). □

The proof relies on showing 𝑇 (𝑉 ) preserves strict concavity or if 𝑉 (𝑠) is strictly concave, then so
is 𝑇 (𝑉 ) (𝑠). Lastly, note that the theorem gives us a stationary policy function that depends only on the
state vector. This fact will be useful in econometric applications when deriving the property of various
estimators.

11.4.2 Stochastic Case

Naturally, we can add stochasticity to the dynamic program as we saw before. Let 𝜖 be the current value
of a vector of shocks and 𝜖 ∈ E be a finite set. Then, the functional equation becomes

𝑉 (𝑠, 𝜖) = max
𝑠′∈Γ (𝑠,𝜖 )

𝜎 (𝑠, 𝑠′, 𝜖) + 𝛽𝐸𝜖 ′ |𝜖 [𝑉 (𝑠′, 𝜖′)], ∀(𝑠, 𝜖) . (13)

The stochastic process here is purely exogenous because the distribution of 𝜖′ depends on 𝜖 but is invariant
to the current state and control variables. Further the distribution of 𝜖′ |𝜖 is time invariant. These are direct
analogs to the stationary properties of the payoff and transition equations from our cake-eating example.
Once again, we let 𝜋𝑖 𝑗 = 𝑃𝑟 (𝜖′ = 𝜖 𝑗 |𝜖 = 𝜖𝑖) with 𝜋𝑖 𝑗 ∈ (0, 1) and ∑

𝑗=1 𝜋𝑖 𝑗 = 1. Further, Π is the transition
matrix.

Theorem 19. Assume that 𝜎 (𝑠, 𝑠′, 𝜖) is real-valued, continuous, concave, bounded, 0 < 𝛽 < 1, and the
constraint set Γ(𝑠, 𝜖) is compact and convex. Then, we have that (1) there is a unique value function 𝑉 (𝑠, 𝜖)
that solves Equation 13 and (2) there exists a stationary policy function 𝜙 (𝑠, 𝜖).

The above theorem follows in consequence to Blackwell’s Theorem. Taking the FOC, we attain

𝜎𝑠′ (𝑠, 𝑠′, 𝜖) + 𝛽𝐸𝜖 ′ |𝜖 [𝑉𝑠′ (𝑠′, 𝜖′)] = 0. (14)

Using Equation 13 to get a value for 𝑉𝑠′ (𝑠′, 𝜖′), we attain the Euler equation

𝜎𝑠′ (𝑠, 𝑠′, 𝜖) + 𝛽𝐸𝜖 ′ |𝜖 [𝜎𝑠′ (𝑠′, 𝑠′′, 𝜖′)] = 0 (15)

which tells us the expected sum of the marginal variations in the control variable in the current period
must be zero. In other words, a marginal gain in this period must be offset by a marginal loss in the next
period. Lastly, note that this is different from the ex-post Euler equation (after realization of 𝜖′)

𝜎𝑠′ (𝑠, 𝑠′, 𝜖) + 𝛽𝜎𝑠′ (𝑠′, 𝑠′′, 𝜖′) = 0 (16)

and Equation 16 will generally not hold for all realizations of 𝜖′. For the ex-ante optimization problem,
ex-post errors are not fully predictable given the information set available to the agent. Estimation of
stochastic dynamic programming models will leverage the Euler equation in Equation 15.
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12 EXAMPLE

12 Example

The example notebook provides an estimation of the Rust (1987) paper, which solves an dynamic discrete
choice problem with nested fixed point calculation (NFXP). This model falls under the class of optimal
renewal problems and is also a Markov decision process (MDP). Please see that RMarkdown notebook for
the example.

12.1 Curse of Dimensionality

In our discussion in the last section, we mainly focused on the introducing the theory of dynamic pro-
gramming. However, once we consider estimating these models, we need to keep in mind the curse of
dimensionality of dynamic programming problems. When the state vector is high dimensional (or equiv-
alently there are many state variables in the state vector), the computational burden of evaluating the value
function becomes exponentially more burdensome.

In our computational example, we discretized our one dimensional state variable into 39 different
points. In the estimation step, we need to evaluate the expected value function on each of these 39 points.
Now suppose our state variable is 𝑑-dimensional. Then, we would need to evaluate the value function on
each of the (39)𝑑 points on the 𝑑-dimensional grid, which blows up when 𝑑 becomes large. When the state
space gets large, researchers often use interpolation methods (i.e. Chebyshev Polynomial Interpolation) to
approximate the value function.
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Dynamic Programming Example (Rust ’87)
Booth Math Camp (Autumn 2021)

Walter W. Zhang

18 August 2021

In this example, we will examine a version of the Rust (1987) bus problem. This is a classic dynamic discrete
choice problem and is under the class of optimal renewal problems. We will focus on the estimation using
nested fixed point (NFXP), and for a more detailed description of the paper and the estimation procedure see
the DSE 2019 Summer School Slides. The NFXP slides that work through the Rust problem are found here.

Contents
Setting 2

State space discretization 2

Likelihood derivation 5

Fixed point equation 6

MLE estimation with NFXP 6

Exercises 9

# Load packages
require(knitr)
require(kableExtra)
require(data.table)
require(ggplot2)
require(plot.matrix)
require(SQUAREM)
require(R.matlab)
require(latex2exp)

# Read in the data
data_location <- paste0("https://github.com/dseconf/DSE2019/",

"blob/master/02_DDC_SchjerningIskhakov/",
"code/zurcher/busdata1234.mat?raw=true")

DT_0 <- data.table(readMat(data_location)$data)

# Process the data
DT <- data.table(bus_id = DT_0$V1, # Bus id

bus_type = DT_0$V2, # Bus type
i = c(tail(DT_0$V5, -1), 0), # Replacement dummy (i_t)
x = DT_0$V7) # Odometer (x_t)
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# Set scale of x to be thousands of miles
DT[, x := x/1000]

# Primitives
time_periods <- nrow(DT)
beta <- 0.999 # discount factor
step_size <- 10
K_val <- ceiling(max(DT$x)/step_size)
state_grid <- seq(step_size, K_val * step_size, step_size) - step_size/2

Setting
We assume that Harold Zurcher has one bus and at the beginning of each time period he decides whether to
replace the bus engine or not. When the bus engine is replaced (it = 1), the mileage becomes zero at the
beginning of the period. Then the bus runs for a period and the mileage xt+1 is recorded. Replacing the
bus engine incurs a fixed cost RC. There is a per-period dis-utility since the mileage accumulates (i.e. an
increasing per-period maintenance cost). Further, there are mean zero iid T1EV shocks ϵ All together, the
per-period utility has form

u(xt, it, ϵt; θ) =
{

−c(xt; θ) + ϵ0t if it = 0
−RC − c(0; θ) + ϵ1,t if it = 1

where we set a linear cost, c(xt; θ) = θ1xt, and the end-of-period mileage never decreases unless the
engine is replaced at the beginning of the period. We assume (xt, ϵ0,t, it, θ2) follows a Markov transition
probability p(xt+1, ϵ0,t+1, ϵ1,t+1|xt, ϵ0,tϵ1,t, it, θ2). The researcher observes xt. We set θ = (θ1, θ2, RC) to be
the parameters of interest.

Rust (1987)’s conditional independence (CI) assumption is that conditional on the state variable and action
of the current period, the error terms do not affect the state variable next period. In symbols, we see that

p(xt+1, ϵ0,t+1, ϵ1,t+1|xt, ϵ0,tϵ1,t, it, θ2) = p(xt+1|xt, it, θ2)g(ϵ0,t+1)g(ϵ1,t+1)

where g(·) is the TIEV distribution function for the shocks (or error terms).

From the iid assumption of the TIEV error terms, we have g(ϵ0,t+1) and g(ϵ1,t+1) on the RHS. The CI
assumption is fleshed out in that p(xt+1|xt, it, θ2) shows the transition to the next state only depends on the
current state and the choice take at the current time period. The CI assumption will impose a conditional
first-order Markov structure on the decision problem. This will help simplify the dynamic discrete choice
problem.

State space discretization
We discretize the state space by dividing the mileage from the data by 10. This will yield us an upper bound
at 390 since the maximum mileage (in the thousands) observed is 387.282. Then our discretized state will
have the state s in buckets 1, 2, 3, . . . , K where in our set up K = 39. s here is the mileage buckets that
discretize the state space. Further, note that p(xt+1|xt, it = 1, θ2) will be a 1 × K vector since when replacing
the bus engine (it = 1), the new engine will have mileage set to zero regardless of the value of the previous
state variable.

We can estimate the transition probabilities, p(xt+1|xt, it = 1, θ2), in our discretized state space from the
simple non-parametric frequency estimator (θ2 is “estimated” non-parametrically):
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p(s′|s, a, θ2) =
∑T

t=1 1{xt+1 = s′, xt = s, it = a}
∑

k∈S
∑T

t=1 1{xt+1 = l, xt = s, it = a}
where s′ is the new state, s is the past state, and a is the action chosen.

We can visualize the state transition matrix in the following plot.
# Discretize the state space
DT[, s := floor(x/step_size) + 1]
DT[, s1 := shift(s, -1)]

# Drop the last observation
DT <- DT[complete.cases(DT)]

# Graph the state transition
graph_DT <- copy(DT)[, c("i", "s", "s1")]
graph_DT[, i := factor(as.integer(i))]
ggplot(graph_DT, aes(x = s, y = s1, color = i)) +

geom_point(alpha = 0.1) +
labs(color = "Action (a)") +
xlab("Current State (s)") +
ylab("Next State (s')") +
theme_bw()
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From the plot, we see that generally Harold Zurcher replaces his bus engine when the current state is high.
# Construct the transition matrix
## Rows are next state, columns are current state

## i = 0 Case
t0 <- data.table(s1 = 1:K_val)
for (s_val in 1:(K_val))
{

freq_s_val <- table(DT[i == 0 & s == s_val, s1])
if (length(freq_s_val) == 0)
{

# Zero frequency case
freq_DT <- data.table(V1 = 1:K_val, N = NA)

} else
{

# Frequency in non-zero case
freq_DT <- data.table(freq_s_val)
freq_DT[, V1 := as.integer(V1)]

}
t0 <- merge(t0, freq_DT, by.x = "s1", by.y = "V1", all.x = TRUE)
setnames(t0, "N", as.character(s_val))

}
t0[is.na(t0)] <- 0
trans_mat_0 <- as.matrix(unname(t0[, -1]))
trans_mat_0 <- sweep(trans_mat_0, 2, colSums(trans_mat_0), "/")
trans_mat_0[is.nan(trans_mat_0)] <- 0

## i = 1 Case (Just a vector)
t1 <- data.table(s1 = 1:K_val)
freq_DT <- data.table(table(DT[i == 1, s1]))
freq_DT[, V1 := as.integer(V1)]
t1 <- merge(t1, freq_DT, by.x = "s1", by.y = "V1", all.x = TRUE)
t1[is.na(t1)] <- 0
trans_mat_1 <- as.matrix(unname(t1[,-1]))
trans_mat_1 <- trans_mat_1/colSums(trans_mat_1)
## Stack into a matrix
trans_mat_1 <- matrix(trans_mat_1, nrow = K_val, ncol = K_val)

We can also visualize the i = 0 transition matrix.
# i = 0 matrix
par(mar=c(5.1, 4.1, 4.1, 4.1))
t0_mat <- copy(trans_mat_0)
t0_mat[t0_mat == 0] <- NA
plot(t0_mat, main = "Transition Matrix (i = 0)")
par(mar=c(5.1, 4.1, 4.1, 2.1))
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Transition Matrix (i = 0)
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Likelihood derivation
We now derive Pr(it = 0|xt, θ) and Pr(it = 1|xt, θ) as a function of the expected value function EVθ(x; i) =∫

Vθ(y, ϵ)p(dϵ)p(dy|x, i, θ2) and the period specific utility ū(xt, it; θ) net of ϵ.

From the additive separability of xt and ϵ1,t, ϵ0,t in the utility function (u(xt, it; θ)), we write the per-period
utility function (with ϵ) as

u(xt, it; θ) = ū(xt, it, ϵt; θ) + ϵi,t, ∀it ∈ 0, 1

We also define vi(x) as the choice-specific or alternative value function.

From Rust (1987), we can use the standard Blackwell Theorems that tell us the optimal value function exists
and is the unique solution to the Bellman Equation,

Vθ(x, ϵ) = max
i∈{0,1}

{
ū(x, i; θ) + βEVθ(x, i)

}

= max
i∈{0,1}

{
vi(x) + ϵi

}

Then, the conditional choice probabilities (Pr(it = 0|xt, θ) and Pr(it = 1|xt, θ)), will have the standard logit
form.

Pr(it = i|xt, θ) = Pr{vi(xt) + ϵi ≥ vj(xt) + ϵj}

= exp(vi(xt))∑
k∈{0,1} exp(vk(xt))
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where i, j ∈ {0, 1} and j = 1 − i.

Fixed point equation
We can use the log-sum property of the TIEV errors to show that the fixed point equation holds. More
specifically, we use the fact that ϵt are mean zero, iid, and TIEV distributed. Then, we first see that

∫

ϵ

Vθ(y, ϵ)p(dϵ) =
∫

ϵ

max
i∈{0,1}

{
vi(y) + ϵi

}
p(dϵ)

= log
( ∑

k∈{0,1}
exp(vk(y))

)

= log
( ∑

k∈{0,1}
exp(ū(y, k; θ) + EVθ(y, k))

)

Then, we can use the conditional independence assumption that we discussed before to get,

EVθ(x, i) =
∫

y

∫

ϵ

Vθ(y, ϵ)p(dϵ)p(dy|x, i, θ)

=
∫

i

[ ∫

ϵ

Vθ(y, ϵ)p(dϵ)
]
p(dy|x, i, θ)

Using our derivation above, we plug in for the value in the brackets, and attain

EVθ(x, i) =
∫

i

log
( ∑

k∈{0,1}
exp(ū(y, k; θ) + EVθ(y, k))

)
p(dy|x, i, θ)

which is what we wanted to show.

MLE estimation with NFXP
We implement the MLE estimator with β = 0.999. From our results from before, we can write the likelihood
as

L(x1, . . . , xT , i1, . . . , iT |θ) =
T∑

t=1
log(P (it|xt, θ))

The nested fixed point (NXFP) algorithm has an outer and inner loop. The optimizer choose the parameters
θ1, RC in the outer loop. In the inner loop, the expected value function fixed point iteration is run to get the
value function given the chosen parameters. Thus, in each step of the outer loop (or the MLE optimizer), a
fixed point iteration of the expected value function is run on across the discretized state space. We use the
SQUAREM package to perform the inner loop evaluation. We use the BFGS optimization algorithm for the outer
loop.
# nll_Rust --------------------------------------------------------------------
#' Computes the negative log-likelihood for Rust Problem
#' @param theta_vec A vector of parameters (theta_1, RC)
#' @return Log-likelihood value (numeric)

nll_Rust <- function(theta_vec)
{

# Parameters
theta_1 <- theta_vec[1]
RC <- theta_vec[2]
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# Set up primitives
u_bar_vec <- rep(0, 2 * K_val)
ev_vec_init <- rep(0, 2 * K_val)
cost_vec <- theta_1 * state_grid
u_bar_vec[1:K_val] <- -1 * cost_vec
u_bar_vec[(K_val + 1):(2 * K_val)] <- -1 * RC

# NXFP w/ SQUAREM (inner loop)
## NXFP uses value function iteration in the inner loop
## (Expected) Value Function Iteration with `squarem`
ev_res <- squarem(par = ev_vec_init, fixptfn = ev_Rust)
ev_res_vec <- ev_res$par

# Compute NLL
## Choice specific value function
v_0 <- u_bar_vec[1:K_val] + beta * ev_res_vec[1:K_val]
v_1 <- u_bar_vec[(K_val + 1):(2 * K_val)] + beta * ev_res_vec[(K_val + 1):(2 * K_val)]
v_max_val <- max(c(v_0, v_1)) # Avoid overflow
## CCPs (Conditional choice probabilities)
ccp_0 <- exp(v_0 - v_max_val) / (exp(v_1 - v_max_val) + exp(v_0 - v_max_val))
ccp_1 <- 1 - ccp_0
## NLL value (Negative log-likelihood)
nll <- -1 * sum(log(c(DT[i == 0, ccp_0[s]], DT[i == 1, ccp_1[s]])))

return(nll)
}

# -----------------------------------------------------------------------------

# ev_Rust ---------------------------------------------------------------------
#' Computes the fixed point mapping
#' Runs inside the `nll_Rust` function
#' @param ev_vec Value of the expected value function
#' @return A vector of new expected value function values (numeric vector)

ev_Rust <- function(ev_vec)
{

# Avoid overflow
inner_val <- u_bar_vec_ + beta * ev_vec
inner_max <- max(inner_val)
inner_val <- exp(inner_val - inner_max)
outer_val <- log(inner_val[1:K_val] + inner_val[(K_val + 1):(2 * K_val)])
outer_val <- outer_val + inner_max

# EV computation
ev_i_0 <- outer_val %*% trans_mat_0
ev_i_1 <- outer_val %*% trans_mat_1

return(c(ev_i_0, ev_i_1))
}

# -----------------------------------------------------------------------------
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Parameter Estimate SE
θ1 0.014 0.00053
RC 7.286 0.13035
LL -306.522 -

# Run the outer loop

## Initial values
theta_init <- c(0.3, 0.1)
## Test Run with initial values
nll_Rust(theta_init)

[1] 282427.3
## BFGS Optimizer
init_time <- Sys.time()
optim_res <- optim(theta_init,

nll_Rust,
method = "BFGS",
hessian = TRUE,
control = list(reltol = 1e-10))

end_time <- Sys.time()
print(paste0("Time Elapsed: ", format(end_time - init_time, digits = 3)))

[1] "Time Elapsed: 0.75 secs"

The optimizer converged with code 0, which implies it has converged. We get the following estimates for the
parameters of interest. MLE standard errors are recovered from the numerically computed Hessian.
# Results
res_DT <- data.table(Parameter = c("$\\theta_1$", "$RC$", "LL"),

Estimate = round(c(optim_res$par, optim_res$value * -1),
digits = 3),

SE = c(round(1/sqrt(diag(optim_res$hessian)),
digits = 5), "-"))

kable(res_DT, booktabs = TRUE, format = 'latex', escape = FALSE) %>%
kable_styling(latex_options = "striped", position = "center")

We can also plot the cost function by the state variable using our estimated coefficients.
cost_func <- function(x) {optim_res$par[1] * x }
cost_DT <- data.table(x = seq(0, max(DT$x), length.out = 1000))
cost_DT[, cost := cost_func(x)]

ggplot(cost_DT, aes(x = x, y = cost)) +
geom_line(size = 1, color = "lightsteelblue") +
xlab(TeX("$x_t$ (Thousands of miles)")) +
ylab("Cost (Dollars)") +
theme_bw()
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Exercises
1. Estimate the Rust Problem with a quadratic cost function.

c̃(xt; θ) = θ10xt + θ11x2
t

(Hint: Check for underflow/overflow issues with the estimation)
2. We used the supplied replacement indicator from the data. Assume that we were not given this indicator

and instead had to construct it from the odometer data. (A replacement indicator, ĩt, would be when
the mileage next period is smaller than the current period.) How would the results differ? What would
we miss? Will this bias our estimates?

ĩt =
{

1 if xt+1 < xt

0 if xt+1 ≥ xt

3. Instead of using the SQUAREM package for expected value function iteration, write out your own value
function iteration algorithm. Is it faster or slower than the squarem function? Can you think of ways
to speed up the expected value function iteration?
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